@article{DMGT_2024_44_3_a10,
author = {Keough, Lauren and Parker, Darren B.},
title = {An extremal problem for the neighborhood {Lights} {Out} game},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {997--1021},
year = {2024},
volume = {44},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a10/}
}
Keough, Lauren; Parker, Darren B. An extremal problem for the neighborhood Lights Out game. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 3, pp. 997-1021. http://geodesic.mathdoc.fr/item/DMGT_2024_44_3_a10/
[1] A.T. Amin and P.J. Slater, Neighborhood domination with parity restrictions in graphs, Congr. Numer. 91 (1992) 19–30.
[2] M. Anderson and T. Feil, Turning Lights Out with linear algebra, Math. Mag. 71(4) (1998) 300–303. https://doi.org/10.1080/0025570X.1998.11996658
[3] C. Arangala, The 4 × n multistate Lights Out game, Math. Sci. Int. Res. J. 1 (2012) 10–13.
[4] C. Arangala and M. MacDonald, The 6 × n five color Lights Out game, J. Recreat. Math. 38 (2014) 38–44.
[5] C. Arangala, M. MacDonald and R. Wilson, Multistate lights out, Pi Mu Epsilon J. 14 (2014) 9–18.
[6] L.E. Ballard, E.L. Budge and D.R. Stephenson, Lights Out for graphs related to one another by constructions, Involve 12 (2019) 181–201. https://doi.org/10.2140/involve.2019.12.181
[7] W.C. Brown, Matrices over Commutative Rings (Marcel Dekker, Inc., New York, 1993).
[8] D. Craft, Z. Miller and D. Pritikin, A solitaire game played on 2-colored graphs, Discrete Math. 309 (2009) 188–201. https://doi.org/10.1016/j.disc.2007.12.069
[9] S. Edwards, V. Elandt, N. James, K. Johnson, Z. Mitchell and D. Stephenson, Lights Out on finite graphs, Involve 3 (2010) 17–32. https://doi.org/10.2140/involve.2010.3.17
[10] A. Giffen and D.B. Parker, On generalizing the ``Lights Out" game and a generalization of parity domination, Ars Combin. 111 (2013) 273–288.
[11] J. Goldwasser and W. Klostermeyer, Maximization versions of ``Lights Out'' games in grids and graphs, Congr. Numer. 126 (1997) 99–111.
[12] A. Graf, A new graceful labeling for pendant graphs, Aequationes Math. 87 (2014) 135–145. https://doi.org/10.1007/s00010-012-0184-4
[13] D.B. Parker and V. Zadorozhnyy, A group-labeling version of the Lights Out game, Involve 14 (2021) 541–554. https://doi.org/10.2140/involve.2021.14.541
[14] D.B. Parker., The Lights Out game on subdivided caterpillars, Ars Combin. 136 (2018) 347–356.
[15] K. Sutner, The \sigma-game and cellular automata, Amer. Math. Monthly 97 (1990) 24–34. https://doi.org/10.1080/00029890.1990.11995540