A $\sigma_3$ condition for arbitrarily partitionable graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 755-776

Voir la notice de l'article provenant de la source Library of Science

A graph G of order n is arbitrarily partitionable (AP for short) if, for every partition (λ_1, . . . ,λ_p) of n, there is a partition (V_1, . . . ,V_p) of V(G) such that G[V_i] is a connected graph of order λ_i for every i ∈{1, . . .,p}. Several aspects of AP graphs have been investigated to date, including their connection to Hamiltonian graphs and traceable graphs. Every traceable graph (and, thus, Hamiltonian graph) is indeed known to be AP, and a line of research on AP graphs is thus about weakening, to APness, known sufficient conditions for graphs to be Hamiltonian or traceable. In this work, we provide a sufficient condition for APness involving the parameter σ_3, where, for a given graph G, the parameter σ_3(G) is defined as the minimum value of d(u)+d(v)+d(w)-|N(u) ∩ N(v) ∩ N(w)| for a set {u,v,w} of three pairwise independent vertices u, v, and w of G. Flandrin, Jung, and Li proved that any graph G of order n is Hamitonian provided G is 2-connected and σ_3(G) ≥ n, and traceable provided σ_3(G) ≥ n-1. Unfortunately, we exhibit examples showing that having σ_3(G) ≥ n-2 is not a guarantee for G to be AP. However, we prove that G is AP provided G is 2-connected, σ_3(G) ≥ n-2, and G has a perfect matching or quasi-perfect matching.
Keywords: arbitrarily partitionable graph, partition into connected subgraphs, $\sigma_3$ condition, Hamiltonian graph, traceable graph
@article{DMGT_2024_44_2_a17,
     author = {Bensmail, Julien},
     title = {A $\sigma_3$ condition for arbitrarily partitionable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {755--776},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a17/}
}
TY  - JOUR
AU  - Bensmail, Julien
TI  - A $\sigma_3$ condition for arbitrarily partitionable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 755
EP  - 776
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a17/
LA  - en
ID  - DMGT_2024_44_2_a17
ER  - 
%0 Journal Article
%A Bensmail, Julien
%T A $\sigma_3$ condition for arbitrarily partitionable graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 755-776
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a17/
%G en
%F DMGT_2024_44_2_a17
Bensmail, Julien. A $\sigma_3$ condition for arbitrarily partitionable graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 755-776. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a17/