@article{DMGT_2024_44_2_a17,
author = {Bensmail, Julien},
title = {A $\sigma_3$ condition for arbitrarily partitionable graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {755--776},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a17/}
}
Bensmail, Julien. A $\sigma_3$ condition for arbitrarily partitionable graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 755-776. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a17/
[1] D. Barth, O. Baudon and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002) 205–216. https://doi.org/10.1016/S0166-218X(00)00322-X
[2] J. Bensmail, Partitions and Decompositions of Graphs, Ph.D. Thesis (Université de Bordeaux, France, 2014).
[3] J. Bensmail and B. Li, More aspects of arbitrarily partitionable graphs, Discuss. Math. Graph Theory 42 (2022) 1237–1261. https://doi.org/10.7151/dmgt.2343
[4] E. Drgas-Burchardt and E. Sidorowicz, Preface, Discuss. Math. Graph Theory 35 (2015) 313–314. https://doi.org/10.7151/dmgt.1809
[5] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449–467. https://doi.org/10.4153/CJM-1965-045-4
[6] E. Flandrin, H. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Math. 90 (1991) 41–52. https://doi.org/10.1016/0012-365X(91)90094-I
[7] R.J. Gould, Recent advances on the Hamiltonian problem: Survey III}, Graphs Combin. 30 (2014) 1–46. https://doi.org/10.1007/s00373-013-1377-x
[8] E. Győri, On division of graphs to connected subgraphs, in: Proc. 5th Hungarian Combinational Colloquium (1978) 485–494.
[9] M. Horňák, A. Marczyk, I. Schiermeyer and M. Woźniak, Dense arbitrarily vertex decomposable graphs, Graphs Combin. 28 (2012) 807–821. https://doi.org/10.1007/s00373-011-1077-3
[10] M. Horňák and M. Woźniak, Arbitrarily vertex decomposable trees are of degree at most 6, Opuscula Math. 23 (2003) 49–62.
[11] R. Kalinowski, M. Pilśniak, I. Schiermeyer and M. Woźniak, Dense arbitrarily partitionable graphs, Discuss. Math. Graph Theory 36 (2016) 5–22. https://doi.org/10.7151/dmgt.1833
[12] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar. 30 (1977) 241–251.
[13] A. Marczyk, A note on arbitrarily vertex decomposable graphs, Opuscula Math. 26 (2006) 109–118.
[14] A. Marczyk, An Ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math. 309 (2009) 3588–3594. https://doi.org/10.1016/j.disc.2007.12.066
[15] B. Momege, Sufficient conditions for a connected graph to have a Hamiltonian path, in: Proceedings of the 2017 International Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2017), B. Steffen, C. Baier, M. van den Brand, J. Eder, M. Hinchey and T. Mengaria (Ed(s)), (Theory and Practise of Computer Science, LNCS 10139 2017) 205–216. https://doi.org/10.1007/978-3-319-51963-0_16
[16] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
[17] R. Ravaux, Decomposing trees with large diameter, Theoret. Comput. Sci. 411 (2010) 3068–3072. https://doi.org/10.1016/j.tcs.2010.04.032
[18] Z. Tian, Pancyclicity in Hamiltonian Graph Theory, Ph.D. Thesis (Université Paris-Saclay, France, 2021).