@article{DMGT_2024_44_2_a16,
author = {Marinescu-Ghemeci, Ruxandra and Obreja, Camelia and Popa, Alexandru},
title = {Approximate and exact results for the harmonious chromatic number},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {737--754},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a16/}
}
TY - JOUR AU - Marinescu-Ghemeci, Ruxandra AU - Obreja, Camelia AU - Popa, Alexandru TI - Approximate and exact results for the harmonious chromatic number JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 737 EP - 754 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a16/ LA - en ID - DMGT_2024_44_2_a16 ER -
%0 Journal Article %A Marinescu-Ghemeci, Ruxandra %A Obreja, Camelia %A Popa, Alexandru %T Approximate and exact results for the harmonious chromatic number %J Discussiones Mathematicae. Graph Theory %D 2024 %P 737-754 %V 44 %N 2 %U http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a16/ %G en %F DMGT_2024_44_2_a16
Marinescu-Ghemeci, Ruxandra; Obreja, Camelia; Popa, Alexandru. Approximate and exact results for the harmonious chromatic number. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 737-754. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a16/
[1] K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bipartite and chordal graphs, Theoret. Comput. Sci. 381 (2007) 248–259. https://doi.org/10.1016/j.tcs.2007.05.012
[2] K. Asdre, K. Ioannidou and S.D. Nikolopoulos, The harmonious coloring problem is NP-complete for interval and permutation graphs, Discrete Appl. Math. 155 (2007) 2377–2382. https://doi.org/10.1016/j.dam.2007.07.005
[3] H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs, Inform. Process. Lett. 31 (1989) 135–138. https://doi.org/10.1016/0020-0190(89)90221-4
[4] I. Dinur and S. Safra, On the hardness of approximating minimum vertex cover, Ann. of Math. (2) 162 (2005) 439–485. https://doi.org/10.4007/annals.2005.162.439
[5] K. Edwards, The harmonious chromatic number of bounded degree trees, Combin. Probab. Comput. 5 (1996) 15–28. https://doi.org/10.1017/S0963548300001802
[6] K. Edwards, The harmonious chromatic number and the achromatic number, in: Surveys in Combinatorics, R.A. Bailey (Ed(s)), (London Math. Soc. Lecture Note Ser. 241, Cambridge University Press 1997) 13–48. https://doi.org/10.1017/CBO9780511662119.003
[7] K. Edwards and C. McDiarmid, The complexity of harmonious colouring for trees, Discrete Appl. Math. 57 (1995) 133–144. https://doi.org/10.1016/0166-218X(94)00100-R
[8] O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241–252.
[9] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Disc. Meth. 1 (1980) 382–404. https://doi.org/10.1137/0601045
[10] J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Disc. Meth. 4 (1983) 306–311. https://doi.org/10.1137/0604032
[11] M. I. Huilgol and V. Sriram, On the harmonious coloring of certain class of graphs, J. Comb. Inf. Syst. Sci. 41 (2016) 17–29.
[12] K. Ioannidou and S. Nikolopoulos, Harmonious coloring on subclasses of colinear graphs, in: WALCOM: Algorithms and Computation. WALCOM 2010, Lecture Notes in Comput. Sci. 5942, (Springer-Verlag, Berlin, Heidelberg 2010) 136–148. https://doi.org/10.1007/978-3-642-11440-3_13
[13] S. Khot and O. Regev, Vertex cover might be hard to approximate to within 2-\varepsilon, J. Comput. System Sci. 74 (2008) 335–349. https://doi.org/10.1016/j.jcss.2007.06.019
[14] S. Kolay, R. Pandurangan, F. Panolan, V. Raman and P. Tale, Harmonious coloring: Parameterized algorithms and upper bounds, Theoret. Comput. Sci. 772 (2019) 132–142. https://doi.org/10.1016/j.tcs.2018.12.011
[15] Z. Lu, On an upper bound for the harmonious chromatic number of a graph, J. Graph Theory 15 (1991) 345–347. https://doi.org/10.1002/jgt.3190150402
[16] A. Mansuri, R. Chandel and V. Gupta, On harmonious coloring of M(Yn) and C(Yn), World Appl. Program. 2 (2012) 150–152.
[17] B. McKay and G. Royle, Constructing the cubic graphs on up to 20 vertices, Ars Combin. 21-A (1986) 129–140.
[18] Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Discrete Math. 93 (1991) 211–228. https://doi.org/10.1016/0012-365X(91)90257-3
[19] J. Mitchem, On the harmonious chromatic number of a graph, Discrete Math. 74 (1989) 151–157. https://doi.org/10.1016/0012-365X(89)90207-0
[20] U. Muthumari and M. Umamamheswari, Harmonious coloring of central graph of some types of graphs, Int. J. Math. Archive 7(8) (2016) 95–103.
[21] R.W. Pratt, The complete catalog of 3-regular, diameter-3 planar graphs, (1996).
[22] K. Rajam and M.H.M. Pauline, On harmonious colouring of line graph of star graph families, Int. J. Stat. Math. 7 (2013) 33–36.
[23] M.S. Franklin Thamil Selvi and A. Azhaguvel, A study on harmonious coloring of central graph of Jahangir graph, Int. J. Pure Appl. Math. 118 (2018) 413–420.
[24] M.S. Franklin Thamil Selvi, Harmonious coloring of central graphs of certain snake graphs, Appl. Math. Sci. 9 (2015) 569–578. https://doi.org/10.12988/ams.2015.4121012
[25] A. Takaoka, S. Okuma, S. Tayu and S. Ueno, A note on harmonious coloring of caterpillars, IEICE Trans. Inf. Syst. E98.D (2015) 2199–2206. https://doi.org/10.1587/transinf.2015EDP7113
[26] V. Vernold, M. Venkatachalam and K. Kaliraj, Harmonious coloring on double star graph families, Tamkang J. Math. 43 (2012) 153–158. https://doi.org/10.5556/j.tkjm.43.2012.153-158
[27] P. Zhang, A Kaleidoscopic View of Graph Colorings, in: SpringerBriefs Math. (Springer Cham, 2016). https://doi.org/10.1007/978-3-319-30518-9