@article{DMGT_2024_44_2_a15,
author = {Allie, Imran and Arenstein, Jordan},
title = {Resistance in regular class two graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {727--736},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a15/}
}
Allie, Imran; Arenstein, Jordan. Resistance in regular class two graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 727-736. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a15/
[1] I. Allie, Oddness to resistance ratios in cubic graphs, Discrete Math. 342 (2019) 387–392. https://doi.org/10.1016/j.disc.2018.10.014
[2] I. Allie, A note on reducing resistance in snarks, Quaest. Math.(2022), in press. https://doi.org/10.2989/16073606.2022.2053605
[3] I. Allie, E. Máčajova and M. Škoviera, Snarks with resistance n and flow resistance 2n, Electron. J. Combin. 29(1) (2022) #P1.44. https://doi.org/10.37236/10633
[4] G. Brinkmann and E. Steffen, Chromatic-index-critical graphs of orders 11 and 12, European J. Combin. 19 (1998) 889–900. https://doi.org/10.1006/eujc.1998.0254
[5] E.J. Pegg, S. Wagon and E. Weisstein, Class 2 graph (Wolfram MathWorld, 2022). https://mathworld.wolfram.com/Class2Graph.html
[6] M.A. Fiol, G. Mazzuoccolo and E. Steffen, Measures of edge-uncolourability of cubic graphs, Electron. J. Combin. 25(4) (2018) #P4.54. https://doi.org/10.37236/6848
[7] H. Izbicki, Zulässige Kantenfärbungen von pseudo-regulären Graphen 3. Grades mit der Kantenfarbenzahl 3, Monatsh. Math. 66 (1962) 424–430. https://doi.org/10.1007/BF01298238
[8] L. Jin and E. Steffen, Petersen cores and the oddness of cubic graphs, J. Graph Theory 84 (2017) 109–120. https://doi.org/10.1002/jgt.22014
[9] J. Karábaš, E. Máčajova, R. Nedela and M. Škoviera, Girth, oddness and colouring defect of snarks (2021). arXiv: 2106.12205v3
[10] M. Kochol, Three measures of edge-uncolorability, Discrete Math. 311 (2011) 106–108. https://doi.org/10.1016/j.disc.2010.10.001
[11] R. Lukot'ka and J. Mazák, Weak oddness as an approximation of oddness and resistance in cubic graphs, Discrete Math. 244 (2018) 223–226. https://doi.org/10.1016/j.dam.2018.02.021
[12] D. Mattiolo and E. Steffen, Edge colorings and circular flows on regular graphs, J. Graph Theory 99 (2022) 399–413. https://doi.org/10.1002/jgt.22746
[13] E. Steffen, Measurements of edge-uncolorability, Discrete Math. 280 (2004) 191–214. https://doi.org/10.1016/j.disc.2003.05.005
[14] E. Steffen, Classifications and characterizations of snarks, Discrete Math. 188 (1998) 183–203. https://doi.org/10.1016/S0012-365X(97)00255-0
[15] E. Steffen, 1-factor and cycle covers of cubic graphs, J. Graph Theory 78 (2015) 195–206. https://doi.org/10.1002/jgt.21798
[16] V. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 9–17, in Russian.
[17] V. Vizing, The chromatic class of a multigraph, Cybernet. Systems Anal. 1 (1965) 32–41. https://doi.org/10.1007/BF01885700