@article{DMGT_2024_44_2_a11,
author = {Galeana-S\'anchez, Hortensia and Tecpa-Galv\'an, Miguel},
title = {$(k,H)$-kernels in nearly tournaments},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {639--662},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a11/}
}
Galeana-Sánchez, Hortensia; Tecpa-Galván, Miguel. $(k,H)$-kernels in nearly tournaments. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 639-662. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a11/
[1] C. Andenmatten, H-distance, H-A-kernel and in-state splitting in H-colored graphs and digraphs (MSc Thesis supervised by H. Galeana-Sánchez and J. Pach, École Polytechnique Fédérale de Lausanne, Switzerland, 2019).
[2] P. Arpin and V. Linek, Reachability problems in edge-colored digraphs, Discrete Math. 307 (2007) 2276–2289. https://doi.org/10.1016/j.disc.2006.09.042
[3] J. Bang-Jensen, The structure of strong arc-locally semicomplete digraphs, Discrete Math. 283 (2004) 1–6. https://doi.org/10.1016/j.disc.2004.01.011
[4] J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167–168 (1997) 101–114. https://doi.org/10.1016/S0012-365X(96)00219-1
[5] J. Bang-Jensen and G. Gutin, Classes of Directed Graphs (Springer, 2018). https://doi.org/10.1007/978-3-319-71840-8
[6] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Edition (Springer, London, 2000). https://doi.org/10.1007/978-1-84800-998-1
[7] J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141–161. https://doi.org/10.1002/jgt.3190200205
[8] J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory Ser. B 59 (1993) 267–287. https://doi.org/10.1006/jctb.1993.1069
[9] C. Berge, Graphs and Hypergraphs (North-Holland Publishing Co., Amsterdam, 1985).
[10] V. Chvátal, On the computational complexity of finding a kernel, Report CRM300 (Centre de Recherches Mathématiques, Université de Montréal, 1973).
[11] V. Chvátal and L. Lovasz, Every directed graph has a semi-kernel, in: Hypergraph Seminar, Part II: Graphs, Matroids, Designes, C. Berge and D. Ray-Chandhuri (Ed(s)), (Lecture Notes in Mathematics 411, Springer-Verlag 1974) 175. https://doi.org/10.1007/BFb0066192
[12] N. Creignou, The class of problems that are linearly equivalent to satisfiability or a uniform method for proving NP-completeness, Theoret. Comput. Sci. 145 (1995) 111–145. https://doi.org/10.1016/0304-3975(94)00182-I
[13] P. Delgado-Escalante, H. Galeana-Sánchez and S. Arumugam, Restricted domination in arc-colored digraphs, AKCE Int. J. Graphs Comb. 11 (2014) 95–104.
[14] P. Delgado-Escalante, H. Galeana-Sánchez and E. O'Reilly-Regueiro, Alternating kernels, Discrete Appl. Math. 236 (2018) 153–164. https://doi.org/10.1016/j.dam.2017.10.013
[15] Y. Dimopoulos and V. Magirou, A graph theoretic approach to default logic, Inform. Comput. 112 (1994) 239–256. https://doi.org/10.1006/inco.1994.1058
[16] Y. Dimopoulos and A. Torres, Graph theoretical structures in logic programs and default theories, Theoret. Comput. Sci. 170 (1996) 209–244. https://doi.org/10.1016/S0304-3975(96)80707-9
[17] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93–101. https://doi.org/10.1016/S0167-5060(08)70041-4
[18] A.S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, Electron. J. Combin. 4 (2) (1997) #R10. https://doi.org/10.37236/1325
[19] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in generalizations of transitive digraphs, Discuss. Math. Graph Theory 31 (2011) 293–312. https://doi.org/10.7151/dmgt.1546
[20] H. Galeana-Sánchez and C. Henrández-Cruz, k-kernels in k-transitive and k-quasi-transitive digraphs, Discrete Math. 312 (2012) 2522–2530. https://doi.org/10.1016/j.disc.2012.05.005
[21] H. Galeana-Sánchez, C. Hernández-Cruz and S. Arumugam, k-kernels in multipartite tournaments, AKCE Int. J. Graphs Comb. 8 (2011) 181–198.
[22] H. Galeana-Sánchez and R. Sánchez-López, H-kernels and H-obstructions in H-colored digraphs, Discrete Math. 338 (2015) 2288–2294. https://doi.org/10.1016/j.disc.2015.05.021
[23] H. Galeana-Sánchez and R. Sánchez-López, Richardson's theorem in H-coloured digraphs, Graphs Combin. 32 (2016) 629–638. https://doi.org/10.1007/s00373-015-1609-3
[24] H. Galeana-Sánchez and R. Strausz, On panchromatic digraphs and the panchromatic number, Graphs Combin. 31 (2015) 115–125. https://doi.org/10.1007/s00373-013-1367-z
[25] H. Galeana-Sánchez and R. Strausz, On panchromatic patterns, Discrete Math. 339 (2016) 2536–2542. https://doi.org/10.1016/j.disc.2016.03.014
[26] H. Galeana-Sánchez and M. Tecpa-Galván, \mathscr{H}-panchromatic digraphs, AKCE Int. J. Graphs Comb. 17 (2020) 303–313. https://doi.org/10.1016/j.akcej.2019.05.005
[27] H. Galeana-Sánchez and M. Toledo, New classes of panchromatic digraphs, AKCE Int. J. Graphs Comb. 12 (2015) 261–270. https://doi.org/10.1016/j.akcej.2015.11.006
[28] P. Garcia-Vázquez and C. Hernández-Cruz, Some results on 4-transitive digraphs, Discuss. Math. Graph Theory 37 (2017) 117–129. https://doi.org/10.7151/dmgt.1922
[29] A. Ghouila-Houri, Caractérisation des graphes non orientés dont on peut orienter les de maniere a obtenir le graphe d'une relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370–1371.
[30] S. Heard and J. Huang, Disjoint quasi-kernels in digraphs, J. Graph Theory 58 (2008) 251–260. https://doi.org/10.1002/jgt.20310
[31] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205–219. https://doi.org/10.7151/dmgt.1613
[32] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasi-transitive digraphs, Discrete Math. 312 (2012) 2522–2530. https://doi.org/10.1016/j.disc.2012.05.005
[33] D. König, Theorie der Endlichen und Unendlichen Graphen (Reprinted from AMS Chelsea Publishing Company, Providence, Rhode Island, 1950).
[34] M. Kwaśnik, On (k,l)-kernels in graphs and their products, Ph.D. Thesis (Technical University of Wroc\l aw, Wroc\l aw, 1980).
[35] V. Linek and B. Sands, A note on paths in edge-colored tournaments, Ars Combin. 44 (1996) 225–228.
[36] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
[37] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
[38] K.B. Reid, Monotone reachability in arc-colored tournaments, Congr. Numer. 146 (2000) 131–141.
[39] S. Szeider, Finding paths in graphs avoiding forbidden transitions, Discrete Appl. Math. 126 (2003) 261–273. https://doi.org/10.1016/S0166-218X(02)00251-2
[40] R. Wang, (k-1)-kernels in strong k-transitive digraphs, Discuss. Math. Graph Theory 35 (2015) 229–235. https://doi.org/10.7151/dmgt.1787
[41] R. Wang and H. Zhang, (k+1)-kernels and the number of k-kings in k-quasi-transitive digraphs, Discrete Math. 338 (2015) 114–121. https://doi.org/10.1016/j.disc.2014.08.009