Linear arboricity of 1-planar graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 435-457
Voir la notice de l'article provenant de la source Library of Science
The linear arboricity la (G) of a graph G is the minimum number of linear forests that partition the edges of G. In 1981, Akiyama, Exoo and Harary conjectured that ⌈Δ(G)2⌉≤la (G) ≤⌈Δ(G)+12⌉ for any simple graph G. A graph G is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we confirm the conjecture for 1-planar graphs G with Δ(G)≥13.
Keywords:
linear arboricity, 1-planar graph, linear coloring, 3-alternating cycle
@article{DMGT_2024_44_2_a1,
author = {Wang, Weifan and Liu, Juan and Wang, Yiqiao},
title = {Linear arboricity of 1-planar graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {435--457},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a1/}
}
Wang, Weifan; Liu, Juan; Wang, Yiqiao. Linear arboricity of 1-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 435-457. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a1/