Linear arboricity of 1-planar graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 435-457

Voir la notice de l'article provenant de la source Library of Science

The linear arboricity la (G) of a graph G is the minimum number of linear forests that partition the edges of G. In 1981, Akiyama, Exoo and Harary conjectured that ⌈Δ(G)2⌉≤la (G) ≤⌈Δ(G)+12⌉ for any simple graph G. A graph G is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we confirm the conjecture for 1-planar graphs G with Δ(G)≥13.
Keywords: linear arboricity, 1-planar graph, linear coloring, 3-alternating cycle
@article{DMGT_2024_44_2_a1,
     author = {Wang, Weifan and Liu, Juan and Wang, Yiqiao},
     title = {Linear arboricity of 1-planar graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {435--457},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a1/}
}
TY  - JOUR
AU  - Wang, Weifan
AU  - Liu, Juan
AU  - Wang, Yiqiao
TI  - Linear arboricity of 1-planar graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 435
EP  - 457
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a1/
LA  - en
ID  - DMGT_2024_44_2_a1
ER  - 
%0 Journal Article
%A Wang, Weifan
%A Liu, Juan
%A Wang, Yiqiao
%T Linear arboricity of 1-planar graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 435-457
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a1/
%G en
%F DMGT_2024_44_2_a1
Wang, Weifan; Liu, Juan; Wang, Yiqiao. Linear arboricity of 1-planar graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 435-457. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a1/