The achromatic number of the Cartesian product of $K_6$ and $K_q$
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 411-433
Voir la notice de l'article provenant de la source Library of Science
Let G be a graph and C a finite set of colours. A vertex colouring f:V(G)→ C is complete if for any pair of distinct colours c_1,c_2∈ C one can find an edge {v_1,v_2}∈ E(G) such that f(v_i)=c_i, i=1,2. The achromatic number of G is defined to be the maximum number achr(G) of colours in a proper complete vertex colouring of G. In the paper achr(K_6□ K_q) is determined for any integer q such that either 8≤ q≤40 or q≥42 is even.
Keywords:
complete vertex colouring, achromatic number, Cartesian product, complete graph
@article{DMGT_2024_44_2_a0,
author = {Hor\v{n}\'ak, Mirko},
title = {The achromatic number of the {Cartesian} product of $K_6$ and $K_q$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {411--433},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a0/}
}
Horňák, Mirko. The achromatic number of the Cartesian product of $K_6$ and $K_q$. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 411-433. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a0/