@article{DMGT_2024_44_2_a0,
author = {Hor\v{n}\'ak, Mirko},
title = {The achromatic number of the {Cartesian} product of $K_6$ and $K_q$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {411--433},
year = {2024},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a0/}
}
Horňák, Mirko. The achromatic number of the Cartesian product of $K_6$ and $K_q$. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 2, pp. 411-433. http://geodesic.mathdoc.fr/item/DMGT_2024_44_2_a0/
[1] A. Bouchet, Indice achromatique des graphes multiparti complets et réguliers, Cahiers Centre Études Rech. Opér. 20 (1978) 331–340.
[2] N.P. Chiang and H.L. Fu, On the achromatic number of the cartesian product G1× G2, Australas. J. Combin. 6 (1992) 111–117.
[3] F. Harary, S. Hedetniemi and G. Prins, An interpolation theorem for graphical homomorphisms, Port. Math. 26 (1967) {453–462}.
[4] M. Horňák, The achromatic number of K6\square Kq equals 2q+3 if q\ge41 is odd, Discuss. Math. Graph Theory, in press. https://doi.org/10.7151/dmgt.2420
[5] M. Horňák, The achromatic number of K6\square K7 is 18, Opuscula Math. 41 (2021) 163–185. https://doi.org/10.7494/OpMath.2021.41.2.163
[6] M. Horňák and Š. Pčola, Achromatic number of K5× Kn for small n, Czechoslovak Math. J. 53 (2003) 963–988. https://doi.org/10.1023/B:CMAJ.0000024534.51299.08
[7] M. Horňák, J. Puntigán, On the achromatic number of Km× Kn, in: Graphs and Other Combinatorial Topics, M. Fiedler (Ed(s)), (Teubner, Leipzig 1983) 118–123.
[8] W. Imrich and S. Klavžar, {Product Graphs: Structure and Recognition} (Wiley-Interscience, New York, 2000).