@article{DMGT_2024_44_1_a9,
author = {Ahmane, Messaouda and Bouchemakh, Isma and Sopena, \'Eric},
title = {On the broadcast independence number of locally uniform 2-lobsters},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {199--230},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a9/}
}
TY - JOUR AU - Ahmane, Messaouda AU - Bouchemakh, Isma AU - Sopena, Éric TI - On the broadcast independence number of locally uniform 2-lobsters JO - Discussiones Mathematicae. Graph Theory PY - 2024 SP - 199 EP - 230 VL - 44 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a9/ LA - en ID - DMGT_2024_44_1_a9 ER -
Ahmane, Messaouda; Bouchemakh, Isma; Sopena, Éric. On the broadcast independence number of locally uniform 2-lobsters. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 199-230. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a9/
[1] M. Ahmane, Sur le Nombre de Broadcast indépendance de Quelques Classes d'arbres, PhD Thesis (in French), University of Sciences and Technology (Houari Boumediene USTHB, 2020).
[2] M. Ahmane, I. Bouchemakh and É. Sopena, On the broadcast independence number of caterpillars, Discrete Appl. Math. 244 (2018) 20–35. https://doi.org/10.1016/j.dam.2018.03.017
[3] L. Beaudou and R.C. Brewster, On the multipacking number of grid graphs, Discrete Math. Theor. Comput. Sci. 21 (2019) #23. https://doi.org/10.23638/DMTCS-21-3-23
[4] L. Beaudou, R.C. Brewster and F. Foucaud, Broadcast domination and multipacking: bounds and the integrality gap, Australas. J. Combin. 74 (2019) 86–97.
[5] S. Bessy and D. Rautenbach, Algorithmic aspects of broadcast independence (2018). arXiv: 1809.07248.
[6] S. Bessy and D. Rautenbach, Relating broadcast independence and independence, Discrete Math. 342 (2019) 111589. https://doi.org/10.1016/j.disc.2019.07.005
[7] S. Bessy and D. Rautenbach, Girth, minimum degree, independence, and broadcast independence, Commun. Comb. Optim. 4 (2019) 131–139.
[8] J.R.S. Blair, P. Heggernes, S. Horton and F. Manne, Broadcast domination algorithms for interval graphs, series-parallel graphs and trees, Congr. Num. 169 (2004) 55–77.
[9] I. Bouchemakh and N. Fergani, On the upper broadcast domination number, Ars Combin. 130 (2017) 151–161.
[10] I. Bouchemakh and R. Sahbi, On a conjecture of Erwin, Stud. Inform. Univ. 9 (2011) 144–151.
[11] I. Bouchemakh and M. Zemir, On the broadcast independence number of grid graph, Graphs Combin. 30 (2014) 83–100. https://doi.org/10.1007/s00373-012-1253-0
[12] B. Brešar and S. Špacapan, Broadcast domination of products of graphs, Ars Combin. 92 (2009) 303–320.
[13] R.C. Brewster, G. MacGillivray and F. Yang, Broadcast domination and multipacking in strongly chordal graphs, Discrete Appl. Math. 261 (2019) 108–118. https://doi.org/10.1016/j.dam.2018.08.021
[14] R.C. Brewster, C.M. Mynhardt and L. Teshima, New bounds for the broadcast domination number of a graph, Open Math. 11 (2013) 1334–1343. https://doi.org/10.2478/s11533-013-0234-8
[15] E.J. Cockayne, S. Herke and C.M. Mynhardt, Broadcasts and domination in trees, Discrete Math. 311 (2011) 1235–1246. https://doi.org/10.1016/j.disc.2009.12.012
[16] J. Dabney, B.C. Dean, and S.T. Hedetniemi, A linear-time algorithm for broadcast domination in a tree, Networks 53 (2009) 160–169. https://doi.org/10.1002/net.20275
[17] J.E. Dunbar, D.J. Erwin, T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, Broadcasts in graphs, Discrete Appl. Math. 154 (2006) 59–75. https://doi.org/10.1016/j.dam.2005.07.009
[18] D.J. Erwin, Cost domination in graphs (PhD Thesis, Western Michigan University, 2001).
[19] D.J. Erwin, Dominating broadcasts in graphs, Bull. Inst. Combin. Appl. 42 (2004) 89–105.
[20] L. Gemmrich and C.M. Mynhardt, Broadcasts in graphs: Diametrical trees, Australas. J. Combin. 69 (2017) 243–258.
[21] B.L. Hartnell and C.M. Mynhardt, On the difference between broadcast and multipacking numbers of graphs, Util. Math. 94 (2014) 19–29.
[22] S.T. Hedetniemi, Unsolved algorithmic problems on trees, AKCE Int. J. Graphs Comb. 3 (2006) 1–37. https://doi.org/10.1080/09728600.2006.12088803
[23] P. Heggernes and D. Lokshtanov, Optimal broadcast domination in polynomial time, Discrete Math. 306 (2006) 3267–3280. https://doi.org/10.1016/j.disc.2006.06.013
[24] S. Herke and C.M. Mynhardt, Radial trees, Discrete Math. 309 (2009) 5950–5962. https://doi.org/10.1016/j.disc.2009.04.024
[25] S. Lunney and C.M. Mynhardt, More trees with equal broadcast and domination numbers, Australas. J. Combin. 61 (2015) 251–272.
[26] C.M. Mynhardt and A. Roux, Dominating and irredundant broadcasts in graphs, Discrete Appl. Math. 220 (2017) 80–90. https://doi.org/10.1016/j.dam.2016.12.012
[27] C.M. Mynhardt and L. Teshima, Broadcasts and multipackings in trees, Util. Math. 104 (2017) 227–242.
[28] C.M. Mynhardt and J. Wodlinger, A class of trees with equal broadcast and domination numbers, Australas. J. Combin. 56 (2013) 3–22.
[29] C.M. Mynhardt and J. Wodlinger, Uniquely radial trees, J. Combin. Math. Combin. Comput. 93 (2015) 131–152.
[30] S.M. Seager, Dominating Broadcasts of Caterpillars, Ars Combin. 88 (2008) 307–319.
[31] K.W. Soh and K.M. Koh, Broadcast domination in graph products of paths, Australas. J. Combin. 59 (2014) 342–351.