@article{DMGT_2024_44_1_a12,
author = {Lee, Sooyeon and Wu, Haidong},
title = {Beta invariant and chromatic uniqueness of wheels},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {269--280},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a12/}
}
Lee, Sooyeon; Wu, Haidong. Beta invariant and chromatic uniqueness of wheels. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 269-280. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a12/
[1] S. Akbari, S. Alikhani and Y.-h. Peng, Characterization of graphs using domination polynomials, European J. Combin. 31 (2010) 1714–1724. https://doi.org/10.1016/j.ejc.2010.03.007
[2] S. Akbari and M.R. Oboudi, Cycles are determined by their domination polynomials, Ars Combin. 116 (2014) 353–358.
[3] Z.Y. Al-Rekaby and A.J.M. Khalaf, On chromaticity of wheels, Int. J. Math. Comput. Sci. 8 (2014) 1149–1152.
[4] J. Azarija, Some Results from Algebraic Graph Theory, PhD. Thesis (University of Ljubljana, 2016).
[5] I. Beaton, J.I. Brown and B. Cameron, Independence equivalence classes of paths and cycles, Australas. J. Combin. 75 (2019) 127–145.
[6] J.K. Benashski, R.R. Martin, J.T. Moore and L. Traldi, On the {\beta}-invariant for graphs, Congr. Numer. 109 (1995) 211–221.
[7] K. Boyer, B. Brimkov, S. English, D. Ferrero, A. Keller, R. Kirsch, M. Phillips and C. Reinhart, The zero forcing polynomial of a graph, Discrete Appl. Math. 258 (2019) 35–48. https://doi.org/10.1016/j.dam.2018.11.033
[8] B. Bollobás, Modern Graph Theory (Springer-Verlag, New York, 1998).
[9] T.H. Brylawski, A combinatorial model for series-parallel networks, Trans. Amer. Math. Soc. 154 (1971) 1–22. https://doi.org/10.1090/S0002-9947-1971-0288039-7
[10] C.-Y. Chao and E.G. Whitehead Jr., On chromatic equivalence of graphs, in: Theory and Applications of Graphs, Lecture Notes in Math., 642, Y. Alavi and D.R. Lick (Ed(s)), (Springer Berlin Heidelberg 1978) 121–131. https://doi.org/10.1007/BFb0070369
[11] C.-Y. Chao and G.E. Whitehead Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171–177. https://doi.org/10.1016/0012-365X(79)90107-9
[12] H.H. Crapo, A higher invariant for matroids, J. Combin. Theory 2 (1967) 406–417. https://doi.org/10.1016/S0021-9800(67)80051-6
[13] F.M. Dong, K.M. Koh and K.L. Teo, Chromatic Polynomials and Chromaticity of Graphs (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005).
[14] A. de Mier and M. Noy, On graphs determined by their Tutte polynomials, Graphs Combin. 20 (2004) 105–119. https://doi.org/10.1007/s00373-003-0534-z
[15] Y. Duan, H. Wu and Q. Yu, On chromatic and flow polynomial unique graphs, Discrete Appl. Math. 156 (2008) 2300–2309. https://doi.org/10.1016/j.dam.2007.10.010
[16] S. Lee and H. Wu, Bounding the beta invariant of 3-connected matroids, Discrete Math. 345 (2022) 112638. https://doi.org/10.1016/j.disc.2021.112638
[17] N.-Z. Li and G.E. Whitehead Jr., The chromatic uniqueness of {W10}, Discrete Math. 104 (1992) 197–199. https://doi.org/10.1016/0012-365X(92)90334-C
[18] J.A. Makowsky and V. Rakita, On weakly distinguishing graph polynomials, Discrete Math. Theor. Comput. Sci. 21 (2019) 4–10. https://doi.org/10.23638/DMTCS-21-1-4
[19] J.G. Oxley, On Crapo's beta invariant for matroids, Stud. Appl. Math. 66 (1982) 267–277. https://doi.org/10.1002/sapm1982663267
[20] J. Oxley, Matroid Theory (Oxford University Press, Oxford, 2011). https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
[21] R.C. Read, A note on the chromatic uniqueness of {W10}, Discrete Math. 69 (1988) 317. https://doi.org/10.1016/0012-365X(88)90061-1
[22] S.-J. Xu and N.-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984) 207–212. https://doi.org/10.1016/0012-365X(84)90072-4
[23] W.T. Tutte, Connectivity in matroids, Canad. J. Math. 18 (1966) 1301–1324. https://doi.org/10.4153/CJM-1966-129-2
[24] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933) 1–4.