Extremal graphs for even linear forests in bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 5-16

Voir la notice de l'article provenant de la source Library of Science

Zarankiewicz proposed the problem of determining the maximum number of edges in an (n,m)-bipartite graph containing no complete bipartite graph K_a,b. In this paper, we consider a variant of Zarankiewicz's problem and determine the maximum number of edges of an (n,m)-bipartite graph without containing a linear forest consisting of even paths. Moveover, all these extremal graphs are characterized in a recursion way.
Keywords: bipartite graph, linear forest, extremal graph, Tur\'{a}n number
@article{DMGT_2024_44_1_a0,
     author = {Yuan, Long-Tu and Zhang, Xiao-Dong},
     title = {Extremal graphs for even linear forests in bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a0/}
}
TY  - JOUR
AU  - Yuan, Long-Tu
AU  - Zhang, Xiao-Dong
TI  - Extremal graphs for even linear forests in bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2024
SP  - 5
EP  - 16
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a0/
LA  - en
ID  - DMGT_2024_44_1_a0
ER  - 
%0 Journal Article
%A Yuan, Long-Tu
%A Zhang, Xiao-Dong
%T Extremal graphs for even linear forests in bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2024
%P 5-16
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a0/
%G en
%F DMGT_2024_44_1_a0
Yuan, Long-Tu; Zhang, Xiao-Dong. Extremal graphs for even linear forests in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a0/