@article{DMGT_2024_44_1_a0,
author = {Yuan, Long-Tu and Zhang, Xiao-Dong},
title = {Extremal graphs for even linear forests in bipartite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {5--16},
year = {2024},
volume = {44},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a0/}
}
Yuan, Long-Tu; Zhang, Xiao-Dong. Extremal graphs for even linear forests in bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 44 (2024) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMGT_2024_44_1_a0/
[1] H. Bielak and S. Kieliszek, The Turán number of the graph $ 2P_5 $, Discuss. Math. Graph Theory 36 (2016) 683–694. https://doi.org/10.7151/dmgt.1883
[2] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837–853. https://doi.org/10.1017/S0963548311000460
[3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar 10 (1959) 337–356. https://doi.org/10.1007/BF02024498
[4] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolourings, J. Combin. Theory Ser. B 19 (1975) 150–160. https://doi.org/10.1016/0095-8956(75)90080-5
[5] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25, L. Lovász, I.Z. Ruzsa and V.T. Sós (Ed(s)), (Springer, Berlin 2013) 169–264.
[6] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661–667. https://doi.org/10.1007/s00373-010-0999-5
[7] A. Gyárfás, C.C. Rousseau and R.H. Schelp, An extremal problem for paths in bipartite graphs, J. Graph Theory 8 (1984) 83–95. https://doi.org/10.1002/jgt.3190080109
[8] B. Jackson, Cycles in bipartite graphs, J. Combin. Theory Ser. B 30 (1981) 332–342. https://doi.org/10.1016/0095-8956(81)90050-2
[9] Y. Lan, Z. Qin and Y. Shi, The Turán number of 2P7, Discuss. Math. Graph Theory 39 (2019) 805–814. https://doi.org/10.7151/dmgt.2111
[10] J.-Y. Li, S.-S. Li and J.-H. Yin, On Turán number for $ S_{\mathcal{l}_1} \cup S_{\mathcal{l}_2} $, Appl. Math. Comput. 385 (2020) 125400. https://doi.org/10.1016/j.amc.2020.125400
[11] X. Li, J. Tua and Z. Jin, Bipartite rainbow numbers of matchings, Discrete Math. 309 (2009) 2575–2578. https://doi.org/10.1016/j.disc.2008.05.011
[12] J.W. Moon, On independent complete subgraphs in a graph, Canad. J. Math. 20 (1968) 95–102. https://doi.org/10.4153/CJM-1968-012-x
[13] M. Simonovits, A method for solving extremal problems in extremal graph theory, in: In Theory of Graphs, P. Erdős and G. Katona (Ed(s)), (Academic Press 1968) 279–319.
[14] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok. 48 (1941) 436–452, in Hungarian.
[15] L.T. Yuan and X.D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132–139. https://doi.org/10.1016/j.disc.2016.08.004
[16] K. Zarankiewicz, Problem 101, Colloq. Math. 2 (1951) 301–301.