@article{DMGT_2023_43_4_a7,
author = {Szab\'o, P\'eter G. N.},
title = {A characterization of uniquely representable graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {999--1017},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a7/}
}
Szabó, Péter G. N. A characterization of uniquely representable graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 999-1017. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a7/
[1] P. Aboulker, X. Chen, G. Huzhang, R. Kapadia and C. Supko, Lines, betweenness and metric spaces, Discrete Comput. Geom. 56 (2016) 427–448. https://doi.org/10.1007/s00454-016-9806-2
[2] P. Aboulker and R. Kapadia, The Chen-Chvátal conjecture for metric spaces induced by distance-hereditary graphs, European J. Combin. 43 (2015) 1–7. https://doi.org/10.1016/j.ejc.2014.06.009
[3] P. Aboulker, M. Matamala, P. Rochet and J. Zamora, A new class of graphs that satisfies the Chen-Chvátal conjecture, J. Graph Theory 87 (2018) 77–88. https://doi.org/10.1002/jgt.22142
[4] K. Balakrishnan, M. Changat, A.K. Lakshmikuttyamma, J. Mathew, H.M. Mulder, P.G. Narasimha-Shenoi and N. Narayanan, Axiomatic characterization of the interval function of a block graph, Discrete Math. 338 (2015) 885–894. https://doi.org/10.1016/j.disc.2015.01.004
[5] H.-J. Bandelt and A.W.M. Dress, A canonical decomposition theory for metrics on a finite set, Adv. Math. 92 (1992) 47–105. https://doi.org/10.1016/0001-8708(92)90061-O
[6] H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (1986) 182–208. https://doi.org/10.1016/0095-8956(86)90043-2
[7] L. Beaudou, A. Bondy, X. Chen, E. Chiniforooshan, M. Chudnovsky, V. Chvátal, N. Fraiman and Y. Zwols, A de Bruijn-Erdős theorem for chordal graphs, Electron. J. Combin. 22 (2015) #P1.70. https://doi.org/10.37236/3527
[8] L. Beaudou, G. Kahn and M. Rosenfeld, Bisplit graphs satisfy the Chen-Chvátal conjecture, Discrete Math. Theor. Comput. Sci. 21 (2019) #5.
[9] B. Brešar, M. Changat, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi and A.T. Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114–6125. https://doi.org/10.1016/j.disc.2009.05.022
[10] P. Buneman, A note on the metric properties of trees, J. Combin. Theory Ser. B 17 (1974) 48–50. https://doi.org/10.1016/0095-8956(74)90047-1
[11] L. Burigana, Tree representation of qualitive proximities, Math. Social Sci. 185 (2009) 5–36. https://doi.org/10.4000/msh.11000
[12] M. Changat, S. Klavžar and H.M. Mulder, The all-paths transit function of a graph, Czechoslovak Math. J. 51 (2001) 439–448. https://doi.org/10.1023/A:1013715518448
[13] M. Changat, A.K. Lakshmikuttyamma, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi, G. Seethakuttyamma and S. Špacapan, A forbidden subgraph characterization of some graph classes using betweenness axioms, Discrete Math. 313 (2013) 951–958. https://doi.org/10.1016/j.disc.2013.01.013
[14] M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185–194. https://doi.org/10.1016/j.disc.2004.02.017
[15] M. Changat, J. Mathew and H.M. Mulder, Induced path transit function, betweenness and monotonicity, Electron. Notes Discrete Math. 15 (2003) 60–63. https://doi.org/10.1016/S1571-0653(04)00531-1
[16] M. Changat, J. Mathew and H.M. Mulder, The induced path function, monotonicity and betweenness, Discrete Appl. Math. 158 (2010) 426–433. https://doi.org/10.1016/j.dam.2009.10.004
[17] M. Changat, P.G. Narasimha-Shenoi and G. Seethakuttyamma, Betweenness in graphs: A short survey on shortest and induced path betweenness, AKCE Int. J. Graphs Comb. 16 (2019) 96–109. https://doi.org/10.1016/j.akcej.2018.06.007
[18] M. Changat, F.H. Nezhad and N. Narayanan, Axiomatic characterization of the interval function of a bipartite graph, in: Algorithms Discrete Appl. Math., D. Gaur and N.S. Narayareswany (Ed(s)) (2018) 96–106. https://doi.org/10.1007/978-3-319-53007-9_9
[19] M. Changat, I. Peterin, A. Ramachandran and A. Tepeh, The induced path transit function and the Pasch axiom, Bull. Malays. Math. Sci. Soc. (2) 39 (2016) 123–134. https://doi.org/10.1007/s40840-015-0285-z
[20] X. Chen, The Sylvester-Chvátal theorem, Discrete Comput. Geom. 35 (2006) 193–199. https://doi.org/10.1007/s00454-005-1216-9
[21] X. Chen and V. Chvátal, Problems related to a de Bruijn-Erdős theorem, Discrete Appl. Math. 156 (2008) 2101–2108. https://doi.org/10.1016/j.dam.2007.05.036
[22] V. Chvátal, A de Bruijn-Erdős theorem for 1–2 metric spaces, Czechoslovak Math. J. 64 (2014) 45–51. https://doi.org/10.1007/s10587-014-0081-1
[23] V. Chvátal, Sylvester-Gallai theorem and metric betweenness, Discrete Comput. Geom. 31 (2004) 175–195. https://doi.org/10.1007/s00454-003-0795-6
[24] A. Dress, The Category of X-Nets, in: Networks: From Biology to Theory, J. Feng, J. Jost, M. Qian (Ed(s)), (Springer London 2007) 3–22. https://doi.org/10.1007/978-1-84628-780-0_1
[25] A. Dress, K.T. Huber, J. Koolen, V. Moulton and A. Spillner, Characterizing block graphs in terms of their vertex-induced partitions, Australas. J. Combin. 66 (2016) 1–9.
[26] A. Dress and M. Krüger, Parsimonious phylogenetic trees in metric spaces and simulated annealing, Adv. in Appl. Math. 8 (1987) 8–37. https://doi.org/10.1016/0196-8858(87)90003-0
[27] F. Harary, A characterization of block-graphs, Canad. Math. Bull. 6 (1963) 1–6. https://doi.org/10.4153/CMB-1963-001-x
[28] E. Howorka, On metric properties of certain clique graphs, J. Combin. Theory Ser. B 27 (1979) 67–74. https://doi.org/10.1016/0095-8956(79)90069-8
[29] E. Howorka, A characterization of distance-hereditary graphs, Q. J. Math 28 (1977) 417–420. https://doi.org/10.1093/qmath/28.4.417
[30] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65–76. https://doi.org/10.1007/BF02566944
[31] I. Kantor and B. Patkós, Towards a de Bruijn-Erdős theorem in the L1-metric, Discrete Comput. Geom. 49 (2013) 659–670. https://doi.org/10.1007/s00454-013-9496-y
[32] D.C. Kay and G. Chartrand, A characterization of certain ptolemaic graphs, Canad. J. Math. 17 (1965) 342–346. https://doi.org/10.4153/CJM-1965-034-0
[33] V.B. Le and N.N. Tuy, The square of a block graph, Discrete Math. 310 (2010) 734–741. https://doi.org/10.1016/j.disc.2009.09.004
[34] M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness, and svelte graphs, Discrete Math. 254 (2002) 349–370. https://doi.org/10.1016/S0012-365X(01)00296-5
[35] H.M. Mulder, The interval function of a graph (Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980). https://doi.org/10.21136/CMJ.1994.128449
[36] H.M. Mulder and L. Nebeský, Axiomatic characterization of the interval function of a graph, European J. Combin. 30 (2009) 1172–1185. https://doi.org/10.1016/j.ejc.2008.09.007
[37] H.M. Mulder, Transit functions on graphs (and posets), in: Convexity in Discrete Structures, M. Changat, S. Klavžar, H.M. Mulder and A. Vijayakumar (Ed(s)), (Ramanujan Math. Soc. Lect. Notes Ser. 5 2008) 117–130.
[38] L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44 (1994) 173–178. https://doi.org/10.21136/CMJ.1994.128449
[39] L. Nebeský, A characterization of the set of all shortest paths in a connected graph, Math. Bohem. 119 (1994) 15–20. https://doi.org/10.21136/MB.1994.126208
[40] L. Nebeský, Characterizing the interval function of a connected graph, Math. Bohem. 123 (1998) 137–144. https://doi.org/10.21136/MB.1998.126307
[41] L. Nebeský, A characterization of the interval function of a (finite or infinite) connected graph, Czechoslovak Math. J. 51 (2001) 635–642. https://doi.org/10.1023/A:1013744324808
[42] L. Nebeský, The interval function of a connected graph and a characterization of geodetic graphs, Math. Bohem. 126 (2001) 247–254. https://doi.org/10.21136/MB.2001.133909
[43] L. Nebeský, The induced paths in a connected graph and a ternary relation determined by them, Math. Bohem. 127 (2002) 397–408. https://doi.org/10.21136/MB.2002.134072
[44] R. Schrader and L. Stenmans, A de Bruijn-Erdös theorem for {(q,q-4)}-graphs, Discrete Appl. Math. 279 (2019) 198–201. https://doi.org/10.1016/j.dam.2019.11.008
[45] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952) 369–381. https://doi.org/10.1090/S0002-9939-1952-0048405-5