@article{DMGT_2023_43_4_a2,
author = {Andres, Stephan Dominique},
title = {Strong and weak {Perfect} {Digraph} {Theorems} for perfect, $\alpha$-perfect and strictly perfect digraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {909--930},
year = {2023},
volume = {43},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a2/}
}
TY - JOUR AU - Andres, Stephan Dominique TI - Strong and weak Perfect Digraph Theorems for perfect, $\alpha$-perfect and strictly perfect digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 909 EP - 930 VL - 43 IS - 4 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a2/ LA - en ID - DMGT_2023_43_4_a2 ER -
%0 Journal Article %A Andres, Stephan Dominique %T Strong and weak Perfect Digraph Theorems for perfect, $\alpha$-perfect and strictly perfect digraphs %J Discussiones Mathematicae. Graph Theory %D 2023 %P 909-930 %V 43 %N 4 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a2/ %G en %F DMGT_2023_43_4_a2
Andres, Stephan Dominique. Strong and weak Perfect Digraph Theorems for perfect, $\alpha$-perfect and strictly perfect digraphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 909-930. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a2/
[1] S.D. Andres and W. Hochstättler, Perfect digraphs, J. Graph Theory 79 (2015) 21–29. https://doi.org/10.1002/jgt.21811
[2] S.D. Andres, H. Bergold, W. Hochstättler and J. Wiehe, A semi-strong perfect digraph theorem, AKCE Int. J. Graphs Comb. 17 (2020) 992–994. https://doi.org/10.1016/j.akcej.2019.12.018
[3] J. Bang-Jensen, T. Bellitto, T. Schweser and M. Stiebitz, Hajós and Ore constructions for digraphs, Electron. J. Combin. 27 (2020) #P1.63. https://doi.org/10.37236/8942
[4] E. Boros and V. Gurvich, Perfect graphs are kernel solvable, Discrete Math. 159 (1996) 35–55. https://doi.org/10.1016/0012-365X(95)00096-F
[5] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković, Recognizing Berge graphs, Combinatorica 25 (2005) 143–186. https://doi.org/10.1007/s00493-005-0012-8
[6] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. (2) 164 (2006) 51–229. https://doi.org/10.4007/annals.2006.164.51
[7] C. Crespelle and C. Paul, Fully dynamic recognition algorithm and certificate for directed cographs, Discrete Appl. Math. 154 (2006) 1722–1741. https://doi.org/10.1016/j.dam.2006.03.005
[8] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Second Edition (Ann. Discrete Math. 57, Elsevier, Amsterdam, 2004).
[9] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253–267. https://doi.org/10.1016/0012-365X(72)90006-4
[10] L. Lovász, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972) 95–98. https://doi.org/10.1016/0095-8956(72)90045-7
[11] V. Neumann-Lara, The dichromatic number of a digraph, J. Combin. Theory Ser. B 33 (1982) 265–270. https://doi.org/10.1016/0095-8956(82)90046-6
[12] B. Reed, A semi-strong perfect graph theorem, J. Combin. Theory Ser. B 43 (1987) 223–240. https://doi.org/10.1016/0095-8956(87)90022-0