The achromatic number of $K_6\square K_q$ equals $2q+3$ if $q\ge41$ is odd
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1103-1121
Voir la notice de l'article provenant de la source Library of Science
Let G be a graph and C a finite set of colours. A vertex colouring f:V(G)→ C is complete provided that for any two distinct colours c_1,c_2∈ C there is v_1v_2∈ E(G) such that f(v_i)=c_i, i=1,2. The achromatic number of G is the maximum number of colours in a proper complete vertex colouring of G. In the paper it is proved that if q≥41 is an odd integer, then the achromatic number of the Cartesian product of K_6 and K_q is 2q+3.
Keywords:
complete vertex colouring, achromatic number, Cartesian product, complete graph
@article{DMGT_2023_43_4_a12,
author = {Hor\v{n}\'ak, Mirko},
title = {The achromatic number of $K_6\square K_q$ equals $2q+3$ if $q\ge41$ is odd},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {1103--1121},
publisher = {mathdoc},
volume = {43},
number = {4},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a12/}
}
TY - JOUR AU - Horňák, Mirko TI - The achromatic number of $K_6\square K_q$ equals $2q+3$ if $q\ge41$ is odd JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 1103 EP - 1121 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a12/ LA - en ID - DMGT_2023_43_4_a12 ER -
Horňák, Mirko. The achromatic number of $K_6\square K_q$ equals $2q+3$ if $q\ge41$ is odd. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 4, pp. 1103-1121. http://geodesic.mathdoc.fr/item/DMGT_2023_43_4_a12/