@article{DMGT_2023_43_3_a2,
author = {Davila, Randy and Henning, Michael and Pepper, Ryan},
title = {Zero and total forcing dense graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {619--634},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a2/}
}
Davila, Randy; Henning, Michael; Pepper, Ryan. Zero and total forcing dense graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 619-634. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a2/
[1] A. Aazami, Hardness Results and Approximation Algorithms for Some Problems in Graphs, Ph.D Thesis (University of Waterloo, 2008).
[2] A. Aazami, Domination in graphs with bounded propagation: algorithms, formulations and hardness results, J. Comb. Optim. 19 (2010) 429–456. https://doi.org/10.1007/s10878-008-9176-7
[3] AIM Minimum Rank-Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648. https://doi.org/10.1016/j.laa.2007.10.009
[4] M. Alishahi, E. Rezaei-Sani and E. Sharifi, Maximum nullity and zero forcing number on graphs with maximum degree at most three, Discrete Appl. Math. 284 (2020) 179–194. https://doi.org/10.1016/j.dam.2020.03.027
[5] K.F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben, V. Vasilevska and B. Wissman, Zero forcing and power domination for graph products, Australas. J. Combin. 70 (2018) 221–235.
[6] E.J. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Discrete Math. 260 (2003) 37–44. https://doi.org/10.1016/S0012-365X(02)00447-8
[7] R. Davila, Bounding the Forcing Number of a Graph, Masters Thesis (Rice University, 2015).
[8] R. Davila, Total and Zero Forcing in Graphs, Ph.D Thesis (University of Johannesburg, 2019).
[9] R. Davila and M.A. Henning, Total forcing and zero forcing in claw-free cubic graphs, Graphs Combin. 34 (2018) 1371–1384. https://doi.org/10.1007/s00373-018-1934-4
[10] R. Davila and M.A. Henning, On the total forcing number of a graph, Discrete Appl. Math. 257 (2019) 115–127. https://doi.org/10.1016/j.dam.2018.09.001
[11] R. Davila and M.A. Henning, Total forcing versus total domination in cubic graphs, Appl. Math. Comput. 354 (2019) 385–395. https://doi.org/10.1016/j.amc.2019.02.060
[12] R. Davila and M.A. Henning, Zero forcing in claw-free cubic graphs, Bull. Malays. Math. Sci. Soc. 43 (2020) 673–688. https://doi.org/10.1007/s40840-018-00705-5
[13] R. Davila and M.A. Henning, Zero forcing versus domination in cubic graphs, manuscript.
[14] R. Davila, M.A. Henning, C. Magnant and R. Pepper, Bounds on the connected forcing number of a graph, Graphs Combin. 34 (2018) 1159–1174. https://doi.org/10.1007/s00373-018-1957-x
[15] S.M. Fallat, L. Hogben, J. C.-H. Lin and B. Shader, The inverse eigenvalue problem of a graph, zero forcing, and related parameters, Notices Amer. Math. Soc. 67 (2020) 257–261.
[16] M. Fürst and D. Rautenbach, A short proof for a lower bound on the zero forcing number, Discuss. Math. Graph Theory 40 (2020) 355–360. https://doi.org/10.7151/dmgt.2117
[17] M.A. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. 312 (2012) 3107–3116. https://doi.org/10.1016/j.disc.2012.06.024
[18] M.A. Henning and M.D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Comb. Optim. 10 (2005) 283–294. https://doi.org/10.1007/s10878-005-4107-3
[19] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[20] S. Li and W. Sun, On the zero forcing number of a graph involving some classical parameters, J. Comb. Optim. 39 (2020) 365–384. https://doi.org/10.1007/s10878-019-00475-1
[21] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999) 163–177. https://doi.org/10.1002/(SICI)1097-0118(199907)31:33.0.CO;2-T
[22] T. Peters, Positive semidefinite maximum nullity and zero forcing number, Electron. J. Linear Algebra 23 (2012) 815–830. https://doi.org/10.13001/1081-3810.1559
[23] A. Samodivkin, Roman domination excellent graphs: trees, Commun. Comb. Optim. 3 (2018) 1–24.
[24] F.A. Taklimi, Zero Forcing Sets for Graphs, Ph.D Thesis (University of Regina, 2013).