@article{DMGT_2023_43_3_a17,
author = {Carr, MacKenzie and Mynhardt, Christina M. and Oellermann, Ortrud R.},
title = {Enumerating the digitally convex sets of powers of cycles and {Cartesian} products of paths and complete graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {859--874},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a17/}
}
TY - JOUR AU - Carr, MacKenzie AU - Mynhardt, Christina M. AU - Oellermann, Ortrud R. TI - Enumerating the digitally convex sets of powers of cycles and Cartesian products of paths and complete graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 859 EP - 874 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a17/ LA - en ID - DMGT_2023_43_3_a17 ER -
%0 Journal Article %A Carr, MacKenzie %A Mynhardt, Christina M. %A Oellermann, Ortrud R. %T Enumerating the digitally convex sets of powers of cycles and Cartesian products of paths and complete graphs %J Discussiones Mathematicae. Graph Theory %D 2023 %P 859-874 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a17/ %G en %F DMGT_2023_43_3_a17
Carr, MacKenzie; Mynhardt, Christina M.; Oellermann, Ortrud R. Enumerating the digitally convex sets of powers of cycles and Cartesian products of paths and complete graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 859-874. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a17/
[1] J.I. Brown and O.R. Oellermann, Graphs with a minimal number of convex sets, Graphs Combin. 30 (2014) 1383–1397. https://doi.org/10.1007/s00373-013-1356-2
[2] J.I. Brown and O.R. Oellermann, On the spectrum and number of convex sets in graphs, Discrete Math. 338 (2015) 1144-1153. https://doi.org/10.1016/j.disc.2015.01.024
[3] J. Cáceres, A. Márquez, M. Morales and M.L. Puertas, Towards a new framework for domination, Comput. Math. Appl. 62 (2011) 44–50. https://doi.org/10.1016/j.camwa.2011.04.038
[4] J. Cáceres and O.R. Oellermann, On 3-{S}teiner simplicial orderings, Discrete Math. 309 (2009) 5828–5833. https://doi.org/10.1016/j.disc.2008.05.047
[5] J. Cáceres, O.R. Oellermann and M.L. Puertas, Minimal trees and monophonic convexity, Discuss. Math. Graph Theory 32 (2012) 685–704. https://doi.org/10.7151/dmgt.1638
[6] M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91–95. https://doi.org/10.1016/S0012-365X(98)00394-X
[7] F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and {HHD}-free graphs, SIAM J. Discrete Math. 12 (1999) 119–135. https://doi.org/10.1137/S0895480195321718
[8] R. Euler, P. Oleksik and Z. Skupień, Counting maximal distance-independent sets in grid graphs, Discuss. Math. Graph Theory 33 (2013) 531–557. https://doi.org/10.7151/dmgt.1707
[9] M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Meth. 7 (1986) 433–444. https://doi.org/10.1137/0607049
[10] P. Lafrance, O.R. Oellermann and T. Pressey, Generating and enumerating digitally convex sets of trees, Graphs Combin. 32 (2016) 721–732. https://doi.org/10.1007/s00373-015-1604-8
[11] E. Munarini and N.Z. Salvi, Circular binary strings without zigzags, Integers 3 (2003) #A19.
[12] M.H. Nielsen and O.R. Oellermann, Steiner Trees and Convex Geometries, SIAM J. Discrete Math. 23 (2009) 690–693. https://doi.org/10.1137/070691383
[13] O.R. Oellermann, On domination and digital convexity parameters, J. Combin. Math. Combin. Comput. 85 (2013) 273–285.
[14] J.L. Pfaltz and R.E. Jamison, Closure systems and their structure, Inform. Sci. 139 (2001) 275–286. https://doi.org/10.1016/S0020-0255(01)00169-4
[15] A. Rosenfeld and J.L. Pfaltz, Sequential operations in digital picture processing, J. ACM 13 (1966) 471–494. https://doi.org/10.1145/321356.321357
[16] N.J.A. Sloane, \textrm{The On-{L}ine {E}ncyclopedia of {I}nteger {S}equences} (2021). https://oeis.org, 2021
[17] L.A. Székely and H. Wang, On subtrees of trees, Adv. Appl. Math. 34 (2005) 138–155. https://doi.org/10.1016/j.aam.2004.07.002
[18] L.A. Székely and H. Wang, Binary trees with the largest number of subtrees, Discrete Appl. Math. 155 (2007) 374–385. https://doi.org/10.1016/j.dam.2006.05.008
[19] M.L.J. van de Vel, Theory of Convex Structures (North-Holland, 1993).
[20] W. Yan and Y.N. Yeh, Enumeration of subtrees of trees, Theoret. Comput. Sci. 369 (2006) 256–268. https://doi.org/10.1016/j.tcs.2006.09.002