Hop domination in chordal bipartite graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 825-840

Voir la notice de l'article provenant de la source Library of Science

In a graph G, a vertex is said to 2-step dominate itself and all the vertices which are at distance 2 from it in G. A set D of vertices in G is called a hop dominating set of G if every vertex outside D is 2-step dominated by some vertex of D. Given a graph G and a positive integer k, the hop domination problem is to decide whether G has a hop dominating set of cardinality at most k. The hop domination problem is known to be NP-complete for bipartite graphs. In this paper, we design a linear time algorithm for computing a minimum hop dominating set in chordal bipartite graphs.
Keywords: domination, hop domination, polynomial time algorithm, chordal bipartite graphs
@article{DMGT_2023_43_3_a15,
     author = {Henning, Michael A. and Pal, Saikat and Pradhan, Dinabandhu},
     title = {Hop domination in chordal bipartite graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {825--840},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a15/}
}
TY  - JOUR
AU  - Henning, Michael A.
AU  - Pal, Saikat
AU  - Pradhan, Dinabandhu
TI  - Hop domination in chordal bipartite graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 825
EP  - 840
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a15/
LA  - en
ID  - DMGT_2023_43_3_a15
ER  - 
%0 Journal Article
%A Henning, Michael A.
%A Pal, Saikat
%A Pradhan, Dinabandhu
%T Hop domination in chordal bipartite graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 825-840
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a15/
%G en
%F DMGT_2023_43_3_a15
Henning, Michael A.; Pal, Saikat; Pradhan, Dinabandhu. Hop domination in chordal bipartite graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 825-840. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a15/