Well-covered token graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 767-792
Voir la notice de l'article provenant de la source Library of Science
The k-token graph T_k(G) is the graph whose vertices are the k-subsets of vertices of a graph G, with two vertices of T_k(G) adjacent if their symmetric difference is an edge of G. We explore when T_k(G) is a well-covered graph, that is, when all of its maximal independent sets have the same cardinality. For bipartite graphs G, we classify when T_k(G) is well-covered. For an arbitrary graph G, we show that if T_2(G) is well-covered, then the girth of G is at most four. We include upper and lower bounds on the independence number of T_k(G), and provide some families of well-covered token graphs.
Keywords:
independence number, well-covered graph, token graph, double vertex graph, symmetric power of a graph
@article{DMGT_2023_43_3_a12,
author = {Abdelmalek, F.M. and Vander Meulen, Esther and Vander Meulen, Kevin N. and Van Tuyl, Adam},
title = {Well-covered token graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {767--792},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/}
}
TY - JOUR AU - Abdelmalek, F.M. AU - Vander Meulen, Esther AU - Vander Meulen, Kevin N. AU - Van Tuyl, Adam TI - Well-covered token graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 767 EP - 792 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/ LA - en ID - DMGT_2023_43_3_a12 ER -
%0 Journal Article %A Abdelmalek, F.M. %A Vander Meulen, Esther %A Vander Meulen, Kevin N. %A Van Tuyl, Adam %T Well-covered token graphs %J Discussiones Mathematicae. Graph Theory %D 2023 %P 767-792 %V 43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/ %G en %F DMGT_2023_43_3_a12
Abdelmalek, F.M.; Vander Meulen, Esther; Vander Meulen, Kevin N.; Van Tuyl, Adam. Well-covered token graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 767-792. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/