Well-covered token graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 767-792

Voir la notice de l'article provenant de la source Library of Science

The k-token graph T_k(G) is the graph whose vertices are the k-subsets of vertices of a graph G, with two vertices of T_k(G) adjacent if their symmetric difference is an edge of G. We explore when T_k(G) is a well-covered graph, that is, when all of its maximal independent sets have the same cardinality. For bipartite graphs G, we classify when T_k(G) is well-covered. For an arbitrary graph G, we show that if T_2(G) is well-covered, then the girth of G is at most four. We include upper and lower bounds on the independence number of T_k(G), and provide some families of well-covered token graphs.
Keywords: independence number, well-covered graph, token graph, double vertex graph, symmetric power of a graph
@article{DMGT_2023_43_3_a12,
     author = {Abdelmalek, F.M. and Vander Meulen, Esther and Vander Meulen, Kevin N. and Van Tuyl, Adam},
     title = {Well-covered token graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {767--792},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/}
}
TY  - JOUR
AU  - Abdelmalek, F.M.
AU  - Vander Meulen, Esther
AU  - Vander Meulen, Kevin N.
AU  - Van Tuyl, Adam
TI  - Well-covered token graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 767
EP  - 792
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/
LA  - en
ID  - DMGT_2023_43_3_a12
ER  - 
%0 Journal Article
%A Abdelmalek, F.M.
%A Vander Meulen, Esther
%A Vander Meulen, Kevin N.
%A Van Tuyl, Adam
%T Well-covered token graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 767-792
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/
%G en
%F DMGT_2023_43_3_a12
Abdelmalek, F.M.; Vander Meulen, Esther; Vander Meulen, Kevin N.; Van Tuyl, Adam. Well-covered token graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 767-792. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a12/