@article{DMGT_2023_43_3_a0,
author = {Mojdeh, Doost Ali and Samadi, Babak},
title = {Total 2-domination number in digraphs and its dual parameter},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {587--606},
year = {2023},
volume = {43},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a0/}
}
Mojdeh, Doost Ali; Samadi, Babak. Total 2-domination number in digraphs and its dual parameter. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 3, pp. 587-606. http://geodesic.mathdoc.fr/item/DMGT_2023_43_3_a0/
[1] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013) 466–546. https://doi.org/10.1016/j.dam.2011.12.018
[2] S. Arumugam, K. Jacob and L. Volkmann, Total and connected domination in digraphs, Australas. J. Combin. 39 (2007) 283–292.
[3] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, in: Springer Monogr. Math. (Springer-Verlag London Ltd., London, 2007).
[4] C. Berge, The Theory of Graphs and its Applications (Methuen, London, 1962).
[5] G. Chartrand, F. Harary and B. Quan Yue, On the out-domination and in-domination numbers of a digraph, Discrete Math. 197/198 (1999) 179–183. https://doi.org/10.1016/S0012-365X(99)90059-6
[6] X. Chen, G. Hao and L. Volkmann, Bounds on the signed Roman k-domination number of a digraph, Discuss. Math. Graph Theory 39 (2019) 67–79. https://doi.org/10.7151/dmgt.2068
[7] X. Chen, G. Hao and Z. Xie, A note on Roman domination of digraphs, Discuss. Math. Graph Theory 39 (2019) 13–21. https://doi.org/10.7151/dmgt.2067
[8] N.E. Clarke and R.P. Gallant, On 2-limited packings of complete grid graphs, Discrete Math. 340 (2017) 1705–1715. https://doi.org/10.1016/j.disc.2016.11.001
[9] J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer Science, Alavi, Chartrand, Lesniak and Wall (Ed(s)), (Wiley, New-York 1985) 283–300.
[10] Y. Fu, Dominating set and converse dominating set of a directed graph, Amer. Math. Monthly 75 (1968) 861–863. https://doi.org/10.2307/2314337
[11] M. Furuya, Bounds on the domination number of a digraph and its reverse, Filomat 32 (2018) 2517–2524. https://doi.org/10.2298/FIL1807517F
[12] R. Gallant, G. Gunther, B.L. Hartnell and D.F. Rall, Limited packing in graphs, Discrete Appl. Math. 158 (2010) 1357–1364. https://doi.org/10.1016/j.dam.2009.04.014
[13] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman & Co., New York, 1979).
[14] D.S. Hochbaum and D.B. Shmoys, A best possible heuristic for the k-center problem, Math. Oper. Res. 10 (1985) 180–184. https://doi.org/10.1287/moor.10.2.180
[15] G. Hao and J. Qian, On the sum of out-domination number and in-domination number of digraphs, Ars Combin. 119 (2015) 331–337.
[16] G. Hao, J. Qian and Z. Xie, On the sum of the total domination numbers of a digraph and its converse, Quaest. Math. 42 (2019) 47–57. https://doi.org/10.2989/16073606.2018.1438531
[17] F. Harary and T.W. Haynes, Double domination in graphs, Ars Combin. 55 (2000) 201–213.
[18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[19] C. Lee, Domination in digraphs, J. Korean Math. Soc. 35 (1998) 843–853.
[20] D.A. Mojdeh, B. Samadi and I.G. Yero, Further results on packing related parameters in graphs, Discuss. Math. Graph Theory, in press. https://doi.org/10.7151/dmgt.2262
[21] D.A. Mojdeh, B. Samadi and I.G. Yero, Packing and domination parameters in digraphs, Discrete Appl. Math. 269 (2019) 184–192. https://doi.org/10.1016/j.dam.2019.04.008
[22] M. Liedloff, Finding a dominating set on bipartite graphs, Inform. Process. Lett. 107 (2008) 154–157. https://doi.org/10.1016/j.ipl.2008.02.009
[23] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177. https://doi.org/10.2307/2306658
[24] O. Ore, Theory of Graphs in: Amer. Math. Soc. Colloq. Publ. 38 (Amer. Math. Soc., Providence, 1962).
[25] L. Ouldrabah, M. Blidia and A. Bouchou, On the k-domination number of digraphs, J. Comb. Optim. 38 (2019) 680–688. https://doi.org/10.1007/s10878-019-00405-1
[26] D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, USA, 2001).