@article{DMGT_2023_43_2_a6,
author = {Dravec, Tanja and Taranenko, Andrej},
title = {Daisy {Hamming} graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {421--436},
year = {2023},
volume = {43},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a6/}
}
Dravec, Tanja; Taranenko, Andrej. Daisy Hamming graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 421-436. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a6/
[1] B. Brešar, Partial Hamming graphs and expansion procedures, Discrete Math. 237 (2001) 13–27. https://doi.org/10.1016/S0012-365X(00)00362-9
[2] B. Brešar, W. Imrich and S. Klavžar, Tree-like isometric subgraphs of hypercubes, Discuss. Math. Graph Theory 23 (2003) 227–240. https://doi.org/10.7151/dmgt.1199
[3] S. Brezovnik, N. Tratnik and P. Žigert Pleteršek, Resonance graphs of catacondensed even ring systems, Appl. Math. Comput. 374 (2020) 125064. https://doi.org/10.1016/j.amc.2020.125064
[4] V.D. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernet. Systems Anal. 24 (1988) 6–11. https://doi.org/10.1007/BF01069520
[5] D.Ž. Djoković, Distance-preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263–267. https://doi.org/10.1016/0095-8956(73)90010-5
[6] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd Edition (CRC Press, Boca Raton, 2011). https://doi.org/10.1201/b10959
[7] S. Klavžar, Structure of Fibonacci cubes: A survey, J. Comb. Optim. 25 (2013) 505–522. https://doi.org/10.1007/s10878-011-9433-z
[8] S. Klavžar and M. Mollard, Daisy cubes and distance cube polynomial, European J. Combin. 80 (2019) 214–223. https://doi.org/10.1016/j.ejc.2018.02.019
[9] H.M. Mulder, The Interval Function of a Graph, in: Mathematical 429 Centre Tracts 132 (Mathematisch Centrum, Amsterdam, 1980).
[10] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197–204. https://doi.org/10.1016/0012-365X(78)90199-1
[11] E. Munarini, C.P. Cippo and N.Z. Salvi, On the Lucas cubes, Fibonacci Quart. 39 (2001) 12–21.
[12] A. Taranenko, A new characterization and a recognition algorithm of Lucas cubes, Discrete Math. Theor. Comput. Sci. 15 (2013) 31–39.
[13] A. Taranenko, Daisy cubes: A characterization and a generalization, European J. Combin. 85 (2020) 103058. https://doi.org/10.1016/j.ejc.2019.103058
[14] A. Vesel, Cube-complements of generalized Fibonacci cubes, Discrete Math. 342 (2019) 1139–1146. https://doi.org/10.1016/j.disc.2019.01.008
[15] E. Wilkeit, Isometric embeddings in Hamming graphs, J. Combin. Theory Ser. B 50 (1990) 179–197. https://doi.org/10.1016/0095-8956(90)90073-9
[16] P. Žigert Pleteršek, Resonance graphs of kinky benzenoid systems are daisy cubes, MATCH Commun. Math. Comput. Chem. 80 (2018) 207–214.