Daisy Hamming graphs
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 421-436

Voir la notice de l'article provenant de la source Library of Science

Daisy graphs of a rooted graph G with the root r were recently introduced as a generalization of daisy cubes, a class of isometric subgraphs of hypercubes. In this paper we first address a problem posed in [A. Taranenko, Daisy cubes: A characterization and a generalization, European J. Combin. 85 (2020) #103058] and characterize rooted graphs G with the root r for which all daisy graphs of G with respect to r are isometric in G, assuming the graph G satisfies the rooted triangle condition. We continue the investigation of daisy graphs G (generated by X) of a Hamming graph ℋ and characterize those daisy graphs generated by X of cardinality 2 that are isometric in ℋ. Finally, we give a characterization of isometric daisy graphs of a Hamming graph K_k_1⋯ K_k_n with respect to 0^n in terms of an expansion procedure.
Keywords: daisy graphs, expansion, isometric subgraphs
@article{DMGT_2023_43_2_a6,
     author = {Dravec, Tanja and Taranenko, Andrej},
     title = {Daisy {Hamming} graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {421--436},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a6/}
}
TY  - JOUR
AU  - Dravec, Tanja
AU  - Taranenko, Andrej
TI  - Daisy Hamming graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2023
SP  - 421
EP  - 436
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a6/
LA  - en
ID  - DMGT_2023_43_2_a6
ER  - 
%0 Journal Article
%A Dravec, Tanja
%A Taranenko, Andrej
%T Daisy Hamming graphs
%J Discussiones Mathematicae. Graph Theory
%D 2023
%P 421-436
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a6/
%G en
%F DMGT_2023_43_2_a6
Dravec, Tanja; Taranenko, Andrej. Daisy Hamming graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 2, pp. 421-436. http://geodesic.mathdoc.fr/item/DMGT_2023_43_2_a6/