Efficient $(j, k)$-dominating functions
Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 115-135
Voir la notice de l'article provenant de la source Library of Science
For positive integers j and k, an efficient (j, k)-dominating function of a graph G=(V,E) is a function f: V →{0, 1, 2, …, j} such that the sum of function values in the closed neighbourhood of every vertex equals k. The relationship between the existence of efficient (j, k)-dominating functions and various kinds of efficient dominating sets is explored. It is shown that if a strongly chordal graph has an efficient (j, k)-dominating function, then it has an efficient dominating set. Further, every efficient (j,k)-dominating function of a strongly chordal graph can be expressed as a sum of characteristic functions of efficient dominating sets. For j lt; k there are strongly chordal graphs with an efficient dominating set but no efficient (j, k)-dominating function. The problem of deciding whether a given graph has an efficient (j, k)-dominating function is shown to be NP-complete for all positive integers j and k, and solvable in polynomial time for strongly chordal graphs when j = k. By taking j=1 we obtain NP-completeness of the problem of deciding whether a given graph has an efficient k-tuple dominating set for any fixed positive integer k. Finally, we consider efficient (2,2)-dominating functions of trees. We describe a new constructive characterization of the trees with an efficient dominating set and a constructive characterization of the trees with two different efficient dominating sets. A number of open problems and questions are stated throughout the work.
Keywords:
efficient $(j,k)$-dominating function, efficient dominating set, $k$-tuple dominating set, strongly chordal graph, tree, complexity
@article{DMGT_2023_43_1_a6,
author = {Klostermeyer, William F. and MacGillivray, Gary and Semnani, Saeed Mohammadian and Piri, Farzaneh},
title = {Efficient $(j, k)$-dominating functions},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {115--135},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a6/}
}
TY - JOUR AU - Klostermeyer, William F. AU - MacGillivray, Gary AU - Semnani, Saeed Mohammadian AU - Piri, Farzaneh TI - Efficient $(j, k)$-dominating functions JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 115 EP - 135 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a6/ LA - en ID - DMGT_2023_43_1_a6 ER -
%0 Journal Article %A Klostermeyer, William F. %A MacGillivray, Gary %A Semnani, Saeed Mohammadian %A Piri, Farzaneh %T Efficient $(j, k)$-dominating functions %J Discussiones Mathematicae. Graph Theory %D 2023 %P 115-135 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a6/ %G en %F DMGT_2023_43_1_a6
Klostermeyer, William F.; MacGillivray, Gary; Semnani, Saeed Mohammadian; Piri, Farzaneh. Efficient $(j, k)$-dominating functions. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 115-135. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a6/