@article{DMGT_2023_43_1_a12,
author = {Mol, Lucas and Murphy, Matthew J. H. and Oellermann, Ortrud R.},
title = {The threshold dimension and irreducible graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {195--210},
year = {2023},
volume = {43},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a12/}
}
TY - JOUR AU - Mol, Lucas AU - Murphy, Matthew J. H. AU - Oellermann, Ortrud R. TI - The threshold dimension and irreducible graphs JO - Discussiones Mathematicae. Graph Theory PY - 2023 SP - 195 EP - 210 VL - 43 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a12/ LA - en ID - DMGT_2023_43_1_a12 ER -
Mol, Lucas; Murphy, Matthew J. H.; Oellermann, Ortrud R. The threshold dimension and irreducible graphs. Discussiones Mathematicae. Graph Theory, Tome 43 (2023) no. 1, pp. 195-210. http://geodesic.mathdoc.fr/item/DMGT_2023_43_1_a12/
[1] R. Belmonte, F.V. Fomin, P.A. Golovach and M.S. Ramanujan, Metric dimension of bounded width graphs, in: Mathematical Foundations of Computer Science 2015 (MFCS 2015), Lecture Notes in Comput. Sci. 9235, G. Italiano, G. Pighizzini, and D. Sannella (Ed(s)), (Springer, Berlin, Heidelberg 2015) 115–126. https://doi.org/10.1007/978-3-662-48054-0_10
[2] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey (SIAM Monographs on Discrete Mathematics and Applications, 1999). https://doi.org/10.1137/1.9780898719796
[3] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423–441. https://doi.org/10.1137/050641867
[4] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000)) 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0
[5] F. Harary and R. Melter, The metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
[6] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229. https://doi.org/10.1016/0166-218X(95)00106-2
[7] C. Hernando, M. Mora, I.M. Pelayo, C. Seara, J. Cáceres and M.L. Puertas, On the metric dimension of some families of graphs, Electron. Notes Discrete Math. 22 (2005) 129–133. https://doi.org/10.1016/j.endm.2005.06.023
[8] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin. 17 (2010) #R30. https://doi.org/10.37236/302
[9] I. Javaid, M.T. Rahim and K. Ali, Families of regular graphs with constant metric dimension, Util. Math. 65 (2008) 21–33.
[10] L. Mol, M.J.H. Murphy and O.R. Oellermann, The threshold dimension of a graph, Discrete Appl. Math. 287 (2020) 118–133. https://doi.org/10.1016/j.dam.2020.08.007
[11] G. Sudhakara and A.R. Hemanth Kumar, Graphs with metric dimension two–-a characterization, World Academy of Science, Engineering and Technology 36 (2009) 622–627.
[12] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.