Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a8, author = {Brandst\"adt, Andreas and Mosca, Raffaele}, title = {Finding {Dominating} {Induced} {Matchings} in {P\protect\textsubscript{9}-Free} {Graphs} in {Polynomial} {Time}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1139--1162}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a8/} }
TY - JOUR AU - Brandstädt, Andreas AU - Mosca, Raffaele TI - Finding Dominating Induced Matchings in P9-Free Graphs in Polynomial Time JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1139 EP - 1162 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a8/ LA - en ID - DMGT_2022_42_4_a8 ER -
%0 Journal Article %A Brandstädt, Andreas %A Mosca, Raffaele %T Finding Dominating Induced Matchings in P9-Free Graphs in Polynomial Time %J Discussiones Mathematicae. Graph Theory %D 2022 %P 1139-1162 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a8/ %G en %F DMGT_2022_42_4_a8
Brandstädt, Andreas; Mosca, Raffaele. Finding Dominating Induced Matchings in P9-Free Graphs in Polynomial Time. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1139-1162. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a8/
[1] G. Bacsó and Zs. Tuza, A characterization of graphs without long induced paths, J. Graph Theory 14 (1990) 455–464. https://doi.org/10.1002/jgt.3190140409
[2] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296. https://doi.org/10.1016/0095-8956(73)90042-7
[3] A. Brandstädt, C. Hundt and R. Nevries, Efficient edge domination on hole-free graphs in polynomial time, Conference Proceedings LATIN 2010, Lecture Notes in Comput. Sci. 6034 (2010) 650–661. https://doi.org/10.1007/978-3-642-12200-2_56
[4] A. Brandstädt and R. Mosca, Dominating induced matchings for P7-free graphs in linear time, Algorithmica 68 (2014) 998–1018. https://doi.org/10.1007/s00453-012-9709-4
[5] A. Brandstädt and R. Mosca, Finding dominating induced matchings in P8-free graphs in polynomial time, Algorithmica 77 (2017) 1283–1302. https://doi.org/10.1007/s00453-016-0150-y
[6] A. Brandstädt and R. Mosca, Dominating induced matchings in S1,2,4-free graphs, Discrete Appl. Math. 278 (2020) 83–92. https://doi.org/10.1016/j.dam.2018.09.028
[7] A. Brandstädt and R. Mosca, Finding dominating induced matchings in S2,2,3-free graphs, Discrete Appl. Math. 283 (2020) 417–434. https://doi.org/10.1016/j.dam.2020.01.028
[8] A. Brandstädt and R. Mosca, Finding dominating induced matchings in S1,1,5-free graphs, Discrete Appl. Math. 284 (2020) 269–280. https://doi.org/10.1016/j.dam.2020.03.043
[9] D.M. Cardoso, N. Korpelainen and V.V. Lozin, On the complexity of the dominating induced matching problem in hereditary classes of graphs, Discrete Appl. Math. 159 (2011) 521–531. https://doi.org/10.1016/j.dam.2010.03.011
[10] D.L. Grinstead, P.L. Slater, N.A. Sherwani and N.D. Holmes, Efficient edge domination problems in graphs, Inform. Process. Lett. 48 (1993) 221–228. https://doi.org/10.1016/0020-0190(93)90084-M
[11] A. Hertz, V.V. Lozin, B. Ries, V. Zamaraev and D. de Werra, Dominating induced matchings in graphs containing no long claw, J. Graph Theory 88 (2018) 18–39. https://doi.org/10.1002/jgt.22182
[12] N. Korpelainen, V.V. Lozin and C. Purcell, Dominating induced matchings in graphs without a skew star, J. Discrete Algorithms 26 (2014) 45–55. https://doi.org/10.1016/j.jda.2013.11.002
[13] C.L. Lu, M.-T. Ko and C.Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Appl. Math. 119 (2002) 227–250. https://doi.org/10.1016/S0166-218X(01)00198-6
[14] C.L. Lu and C.Y. Tang, Solving the weighted efficient edge domination problem on bipartite permutation graphs, Discrete Appl. Math. 87 (1998) 203–211. https://doi.org/10.1016/S0166-218X(98)00057-2