Bounds on the Double Italian Domination Number of a Graph
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1129-1137.

Voir la notice de l'article provenant de la source Library of Science

For a graph G, a Roman 3-dominating function is a function f : V → 0, 1, 2, 3 having the property that for every vertex u ∈ V, if f(u) ∈ 0, 1, then f(N[u]) ≥ 3. The weight of a Roman 3-dominating function is the sum w(f) = f(V) = Σv∈V f(v), and the minimum weight of a Roman 3-dominating function is the Roman 3-domination number, denoted by γR3(G). In this paper, we present a sharp lower bound for the double Italian domination number of a graph, and improve previous bounds given in [D.A. Mojdeh and L. Volkmann, Roman 3-domination (double Italian domination), Discrete Appl. Math. 283 (2022) 555–564]. We also present a probabilistic upper bound for a generalized version of double Italian domination number of a graph, and show that the given bound is asymptotically best possible.
Keywords: Italian domination, double Italian domination, probabilistic methods
@article{DMGT_2022_42_4_a7,
     author = {Azvin, Farzaneh and Rad, Nader Jafari},
     title = {Bounds on the {Double} {Italian} {Domination} {Number} of a {Graph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1129--1137},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a7/}
}
TY  - JOUR
AU  - Azvin, Farzaneh
AU  - Rad, Nader Jafari
TI  - Bounds on the Double Italian Domination Number of a Graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1129
EP  - 1137
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a7/
LA  - en
ID  - DMGT_2022_42_4_a7
ER  - 
%0 Journal Article
%A Azvin, Farzaneh
%A Rad, Nader Jafari
%T Bounds on the Double Italian Domination Number of a Graph
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1129-1137
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a7/
%G en
%F DMGT_2022_42_4_a7
Azvin, Farzaneh; Rad, Nader Jafari. Bounds on the Double Italian Domination Number of a Graph. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1129-1137. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a7/

[1] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. https://doi.org/10.1016/j.dam.2016.03.017

[2] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013

[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Combin. 17 (2020) 966–984.

[4] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs (J. Combin. Math. Combin. Comput.), to appear.

[5] E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[7] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564. https://doi.org/10.1016/j.dam.2016.09.035

[8] W. Klostermeyer and G. MacGillivray, Roman, Italian, and 2 -domination (J. Combin. Math. Combin. Comput.), to appear.

[9] D.A. Mojdeh and L. Volkmann, Roman {3} -domination ( double Italian domination ), Discrete Appl. Math. 283 (2020) 555–564. https://doi.org/10.1016/j.dam.2020.02.001

[10] Z. Shao, D.A. Mojdeh and L. Volkmann, Total Roman {3} -domination in graphs, Symmetry 12 (2020) 1–15. https://doi.org/10.3390/sym12020268

[11] C.S. ReVelle and K.E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. https://doi.org/10.1080/00029890.2000.12005243

[12] I. Stewart, Defend the Roman Empire !, Sci. Amer. 281 (1999) 136–139. https://doi.org/10.1038/scientificamerican1299-136