The Turán Number for 4 · S
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1119-1128.

Voir la notice de l'article provenant de la source Library of Science

The Turán number of a graph H, denoted by ex(n, H), is the maximum number of edges of an n-vertex simple graph having no H as a subgraph. Let S denote the star on ℓ + 1 vertices, and let k · S denote k disjoint copies of Sℓ. Erdős and Gallai determined the value ex(n, k · S1) for all positive integers k and n. Yuan and Zhang determined the value ex(n, k · S2) and characterized all extremal graphs for all positive integers k and n. Recently, Lan et al. determined the value ex(n, 2 · S3) for all positive integers n, and Li and Yin determined the values ex(n, k · S) for k = 2, 3 and all positive integers ℓ and n. In this paper, we further determine the value ex(n, 4 · S) for all positive integers ℓ and almost all n, improving one of the results of Lidický et al.
Keywords: Turán number, disjoint copies, k · S ℓ
@article{DMGT_2022_42_4_a6,
     author = {Li, Sha-Sha and Yin, Jian-Hua and Li, Jia-Yun},
     title = {The {Tur\'an} {Number} for 4 {\textperiodcentered} {S\protect\textsubscript{\ensuremath{\ell}}}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1119--1128},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a6/}
}
TY  - JOUR
AU  - Li, Sha-Sha
AU  - Yin, Jian-Hua
AU  - Li, Jia-Yun
TI  - The Turán Number for 4 · Sℓ
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1119
EP  - 1128
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a6/
LA  - en
ID  - DMGT_2022_42_4_a6
ER  - 
%0 Journal Article
%A Li, Sha-Sha
%A Yin, Jian-Hua
%A Li, Jia-Yun
%T The Turán Number for 4 · Sℓ
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1119-1128
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a6/
%G en
%F DMGT_2022_42_4_a6
Li, Sha-Sha; Yin, Jian-Hua; Li, Jia-Yun. The Turán Number for 4 · S. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1119-1128. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a6/

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, New York, 1976).

[2] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337–356. https://doi.org/10.1007/BF02024498

[3] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661–667. https://doi.org/10.1007/s00373-010-0999-5

[4] Y.X. Lan, T. Li, Y.T. Shi and J.H. Tu, The Turán number of star forests, Appl. Math. Comput. 348 (2019) 270–274. https://doi.org/10.1016/j.amc.2018.12.004

[5] Y.X. Lan, H. Liu, Z.M. Qin and Y.T. Shi, Degree powers in graphs with a forbidden forest, Discrete Math. 342 (2019) 821–835. https://doi.org/10.1016/j.disc.2018.11.013

[6] S.-S. Li and J.-H. Yin, Two results about the Turán number of star forests, Discrete Math. 343 (2020) 111702. https://doi.org/10.1016/j.disc.2019.111702

[7] B. Lidický, H. Liu and C. Palmer, On the Turán number of forests, Electron. J. Combin. 20 (2013) #P62. https://doi.org/10.37236/3142

[8] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, P. Erdős, G. Katona (Ed(s)), (Academic Press, New York, 1968) 279–319.

[9] P. Turán, An extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.

[10] J.H. Yin and Y. Rao, Turán number for p · Sr, J. Combin. Math. Combin. Comput. 97 (2016) 241–245.

[11] L.T. Yuan and X.-D. Zhang, The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132–139. https://doi.org/10.1016/j.disc.2016.08.004