Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a5, author = {Alizadeh, Hadi and G\"oz\"upek, Didem and Ekinci, G\"ulnaz Boruzanl{\i}}, title = {(C\protect\textsubscript{3}, {C\protect\textsubscript{4},} {C\protect\textsubscript{5},} {C\protect\textsubscript{7})-Free} {Almost} {Well-Dominated} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1099--1117}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a5/} }
TY - JOUR AU - Alizadeh, Hadi AU - Gözüpek, Didem AU - Ekinci, Gülnaz Boruzanlı TI - (C3, C4, C5, C7)-Free Almost Well-Dominated Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1099 EP - 1117 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a5/ LA - en ID - DMGT_2022_42_4_a5 ER -
%0 Journal Article %A Alizadeh, Hadi %A Gözüpek, Didem %A Ekinci, Gülnaz Boruzanlı %T (C3, C4, C5, C7)-Free Almost Well-Dominated Graphs %J Discussiones Mathematicae. Graph Theory %D 2022 %P 1099-1117 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a5/ %G en %F DMGT_2022_42_4_a5
Alizadeh, Hadi; Gözüpek, Didem; Ekinci, Gülnaz Boruzanlı. (C3, C4, C5, C7)-Free Almost Well-Dominated Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1099-1117. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a5/
[1] J.E. Dunbar, L. Markus and D. Rall, Graphs with two sizes of minimal dominating sets, Congr. Numer. 111 (1995) 115-128.
[2] T. Ekim, D. Gözüpek, A. Hujdurović and M. Milanič, Almost well-covered graphs of girth at least 6, Discrete Math. Theor. Comput. Sci. 20 (2018). https://doi.org/10.23638/DMTCS-20-2-17
[3] B. Finbow, A. Hartnell and R. Nowakowski, Well-dominated graphs: A collection of well-covered ones, Ars Combin. 25 (1988) 5–10.
[4] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well covered graphs of girth 5 or greater, J. Combin. Theory Ser. B 57 (1993) 44–68. https://doi.org/10.1006/jctb.1993.1005
[5] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well-covered graphs that contain neither 4 -nor 5 -cycles, J. Graph Theory 18 (1994) 713–721. https://doi.org/10.1002/jgt.3190180707
[6] A. Finbow, B. Hartnell and C. Whitehead, A characterization of graphs of girth eight or more with exactly two sizes of maximal independent sets, Discrete Math. 125 (1994) 153–167. https://doi.org/10.1016/0012-365X(94)90156-2
[7] T.J. Gionet, E.L.C. King and Y. Sha, A revision and extension of results on 4- regular, 4 -connected, claw-free graphs, Discrete Appl. Math. 159 (2011) 1225–1230. https://doi.org/10.1016/j.dam.2011.04.013
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[9] E.L.C. King, Characterizing a subclass of well-covered graphs, Congr. Numer. 160 (2003) 7–31.
[10] V.E. Levit and D. Tankus, Well-dominated graphs without cycles of lengths 4 and 5, Discrete Math. 340 (2017) 1793–1801. https://doi.org/10.1016/j.disc.2017.02.021
[11] J. Topp and L. Volkmann, Well covered and well dominated block graphs and unicyclic graphs, Math. Pannon. 1(2) (1990) 55–66.
[12] I.E. Zverovich and V.E. Zverovich, Locally well-dominated and locally independent well-dominated graphs, Graphs Combin. 19 (2003) 279–288. https://doi.org/10.1007/s00373-002-0507-7