Decomposing 10-Regular Graphs into Paths of Length 5
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1089-1097.

Voir la notice de l'article provenant de la source Library of Science

Let G be a 10-regular graph which does not contain any 4-cycles. In this paper, we prove that G can be decomposed into paths of length 5, such that every vertex is a terminal of exactly two paths.
Keywords: 10-regular graph, decomposition, path
@article{DMGT_2022_42_4_a4,
     author = {Xie, Mengmeng and Zhou, Chuixiang},
     title = {Decomposing {10-Regular} {Graphs} into {Paths} of {Length} 5},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1089--1097},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a4/}
}
TY  - JOUR
AU  - Xie, Mengmeng
AU  - Zhou, Chuixiang
TI  - Decomposing 10-Regular Graphs into Paths of Length 5
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1089
EP  - 1097
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a4/
LA  - en
ID  - DMGT_2022_42_4_a4
ER  - 
%0 Journal Article
%A Xie, Mengmeng
%A Zhou, Chuixiang
%T Decomposing 10-Regular Graphs into Paths of Length 5
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1089-1097
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a4/
%G en
%F DMGT_2022_42_4_a4
Xie, Mengmeng; Zhou, Chuixiang. Decomposing 10-Regular Graphs into Paths of Length 5. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1089-1097. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a4/

[1] F. Botler, G.O. Mota, M.T.I. Oshiro and Y. Wakabayashi, Decomposing regular graphs with prescribed girth into paths of given length, European J. Combin. 66 (2017) 28–36. https://doi.org/10.1016/j.ejc.2017.06.011

[2] F. Botler and A. Talon, Decomposing 8 -regular graphs into paths of length 4, Discrete Math. 340 (2017) 2275–2285. https://doi.org/10.1016/j.disc.2017.04.024

[3] S.I. El-Zanati, M. Ermete, J. Hasty, M.J. Plantholt and S. Tipnis, On decomposing regular graphs into isomorphic double-stars, Discuss. Math. Graph Theory 35 (2015) 73–79. https://doi.org/10.7151/dmgt.1779

[4] J. Erde, Decomposing the cube into paths, Discrete Math. 336 (2014) 41–45. https://doi.org/10.1016/j.disc.2014.07.019

[5] J.F. Fink, On the decomposition of n-cubes into isomorphic trees, J. Graph Theory 14 (1990) 405–411. https://doi.org/10.1002/jgt.3190140403

[6] R. Häggkvist, Decompositions of complete bipartite graphs, in: Surveys in Combinatorics, J. Siemons (Ed(s)), (London Math. Soc. Lecture Note Ser., 1989) 115–147.

[7] M.S. Jacobson, M. Truszczyński and Zs. Tuza, Decompositions of regular bipartite graphs, Discrete Math. 89 (1991) 17–27. https://doi.org/10.1016/0012-365X(91)90396-J

[8] K.F. Jao, A.V. Kostochka and D.B. West, Decomposition of Cartesian products of regular graphs into isomorphic trees, J. Comb. 4 (2013) 469–490. https://doi.org/10.4310/JOC.2013.v4.n4.a6

[9] M. Kouider and Z. Lonc, Path decompositions and perfect path double covers, Australas. J. Combin. 19 (1999) 261–274.

[10] J. Petersen, Die Theorie der regulären graphs, Acta Math. 15 (1891) 193–220. https://doi.org/10.1007/BF02392606