On Mf-Edge Colorings of Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1075-1088.

Voir la notice de l'article provenant de la source Library of Science

An edge coloring φ of a graph G is called an Mf-edge coloring if |φ(v)| ≤ f(v) for every vertex v of G, where φ(v) is the set of colors of edges incident with v and f is a function which assigns a positive integer f(v) to each vertex v. Let Kf (G) denote the maximum number of colors used in an Mf-edge coloring of G. In this paper we establish some bounds on Kf(G), present some graphs achieving the bounds and determine exact values of Kf(G) for some special classes of graphs.
Keywords: edge coloring, anti-Ramsey number, dominating set
@article{DMGT_2022_42_4_a3,
     author = {Ivan\v{c}o, Jaroslav and Onderko, Alfr\'ed},
     title = {On {M\protect\textsubscript{f}-Edge} {Colorings} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1075--1088},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a3/}
}
TY  - JOUR
AU  - Ivančo, Jaroslav
AU  - Onderko, Alfréd
TI  - On Mf-Edge Colorings of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1075
EP  - 1088
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a3/
LA  - en
ID  - DMGT_2022_42_4_a3
ER  - 
%0 Journal Article
%A Ivančo, Jaroslav
%A Onderko, Alfréd
%T On Mf-Edge Colorings of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1075-1088
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a3/
%G en
%F DMGT_2022_42_4_a3
Ivančo, Jaroslav; Onderko, Alfréd. On Mf-Edge Colorings of Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1075-1088. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a3/

[1] A. Adamaszek and A. Popa, Approximation and hardness results for the maximum edge q-coloring problem, J. Discrete Algorithms 38–41 (2016) 1–8. https://doi.org/10.1016/j.jda.2016.09.003

[2] S. Akbari, N. Alipourfard, P. Jandaghi and M. Mirtaheri, On N2-vertex coloring of graphs, Discrete Math. Algorithms Appl. 10 (2018) 1850007. https://doi.org/10.1142/S1793830918500076

[3] K. Budajová and J. Czap, M2 -edge coloring and maximum matching of graphs, Int. J. Pure Appl. Math. 88 (2013) 161–167. https://doi.org/10.12732/ijpam.v88i2.1

[4] J. Czap, Mi-edge colorings of graphs, Appl. Math. Sci. 5 (2011) 2437–2442.

[5] J. Czap, A note on M2 -edge colorings of graphs, Opuscula Math. 35 (2015) 287–291. https://doi.org/10.7494/OpMath.2015.35.3.287

[6] J. Czap and P.Šugerek, Mi-edge colorings of complete graphs, Appl. Math. Sci. 9 (2015) 3835–3842. https://doi.org/10.12988/ams.2015.53264

[7] J. Czap, P.Šugerek and J. Ivančo, M2-edge colorings of cacti and graph joins, Discuss. Math. Graph Theory 36 (2016) 59–69. https://doi.org/10.7151/dmgt.1842

[8] W. Feng, L. Zang and H. Wang, Approximation algorithm for maximum edge coloring, Theoret. Comput. Sci. 410 (2009) 1022–1029. https://doi.org/10.1016/j.tcs.2008.10.035

[9] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1–30. https://doi.org/10.1007/s00373-010-0891-3

[10] J. Ivančo, M2-edge colorings of dense graphs, Opuscula Math. 36 (2016) 603–612. https://doi.org/10.7494/OpMath.2016.36.5.603

[11] T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18 (2002) 303–308. https://doi.org/10.1007/s003730200022

[12] T. Larjomma and A. Popa, The min-max edge q-coloring problem, J. Graph Algorithms Appl. 19 (2015) 505–528. https://doi.org/10.7155/jgaa.00373

[13] J.J. Montellano-Ballesteros, On totally multicolored stars, J. Graph Theory 51 (2006) 225–243. https://doi.org/10.1002/jgt.20140