Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a2, author = {Gerbner, D\'aniel and Patk\'os, Bal\'azs and Vizer, M\'at\'e and Tuza, Zsolt}, title = {Singular {Tur\'an} {Numbers} and {Worm-Colorings}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1061--1074}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a2/} }
TY - JOUR AU - Gerbner, Dániel AU - Patkós, Balázs AU - Vizer, Máté AU - Tuza, Zsolt TI - Singular Turán Numbers and Worm-Colorings JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1061 EP - 1074 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a2/ LA - en ID - DMGT_2022_42_4_a2 ER -
Gerbner, Dániel; Patkós, Balázs; Vizer, Máté; Tuza, Zsolt. Singular Turán Numbers and Worm-Colorings. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1061-1074. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a2/
[1] M. Albertson, Turán theorems with repeated degrees, Discrete Math. 100 (1992) 235–241. https://doi.org/10.1016/0012-365X(92)90644-U
[2] K. Amin, J. Faudree, R.J. Gould and E. Sidorowicz, On the non-( p − 1)-partite Kp-free graphs, Discuss. Math. Graph Theory 33 (2013) 9–23. https://doi.org/10.7151/dmgt.1654
[3] B. Andrásfai, Graphentheoretische Extremalprobleme, Acta Math. Hungar. 15 (1964) 413–418. https://doi.org/10.1007/BF01897150
[4] A. Brouwer, Some lotto numbers from an extension of Turán’s theorem, in: Afdeling Zuivere Wiskunde 152 (Stichting Mathematish Centrum, Amsterdam, 1981).
[5] Y. Caro and Zs. Tuza, Singular Ramsey and Turán numbers, Theory Appl. Graphs 6 (2019) 1–32.
[6] P. Erdős, Extremal problems in graph theory, in: Theory of Graphs and its Applications, Proc. Sympos. Smolenice, 1963 (1964) 29–36.
[7] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959) 337–356. https://doi.org/10.1007/BF02024498
[8] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966) 51–57.
[9] Z. Füredi and M. Simonovits, The history of degenerate ( bipartite ) extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25 (Springer, Berlin, Heidelberg, 2013) 169–264. https://doi.org/10.1007/978-3-642-39286-3_7
[10] D. Gerbner and B. Patkós, Extremal Finite Set Theory (CRC Press, 2018).
[11] W. Goddard, K. Wash and H. Xu, WORM colorings, Discuss. Math. Graph Theory 35 (2015) 571–584. https://doi.org/10.7151/dmgt.1814
[12] D. Hanson and B. Toft, k-saturated graphs of chromatic number at least k, Ars Combin. 31 (1991) 159–164.
[13] M. Kang and O. Pikhurko, Maximum Kr+1-free graphs which are not r-partite, Mat. Stud. 24 (2005) 12–20.
[14] P. Turán, Egy gráfelméleti szélsőértékfeladatról, Mat. Fiz. Lapok 48 (1941) 436–452.