Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a16, author = {Ramezani, Farzaneh and Rowlinson, Peter and Stani\'c, Zoran}, title = {More on {Signed} {Graphs} with at {Most} {Three} {Eigenvalues}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1313--1331}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a16/} }
TY - JOUR AU - Ramezani, Farzaneh AU - Rowlinson, Peter AU - Stanić, Zoran TI - More on Signed Graphs with at Most Three Eigenvalues JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1313 EP - 1331 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a16/ LA - en ID - DMGT_2022_42_4_a16 ER -
%0 Journal Article %A Ramezani, Farzaneh %A Rowlinson, Peter %A Stanić, Zoran %T More on Signed Graphs with at Most Three Eigenvalues %J Discussiones Mathematicae. Graph Theory %D 2022 %P 1313-1331 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a16/ %G en %F DMGT_2022_42_4_a16
Ramezani, Farzaneh; Rowlinson, Peter; Stanić, Zoran. More on Signed Graphs with at Most Three Eigenvalues. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1313-1331. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a16/
[1] M. Anđelić, T. Koledin and Z. Stanić, On regular signed graphs with three eigenvalues, Discuss. Math. Graph Theory 40 (2020) 405–416. https://doi.org/10.7151/dmgt.2279
[2] J. Araujo and T. Bratten, On the spectrum of the Johnson graphs J (n, k, r), Congr. “Dr. Antonio A.R. Monteiro” XIII (2015) 57–62.
[3] P.J. Cameron and J.H. van Lint, Designs, Graphs, Codes and their Links (Cambridge University Press, Cambridge, 1991). https://doi.org/10.1017/CBO9780511623714
[4] X.-M. Cheng, A.L. Gavrilyuk, G.R.W. Greaves and J.H. Koolen, Biregular graphs with three eigenvalues, European J. Combin. 56 (2016) 57–80. https://doi.org/10.1016/j.ejc.2016.03.004
[5] X.-M. Cheng, G.R.W. Greaves and J.H. Koolen, Graphs with three eigenvalues and second largest eigenvalue at most 1, J. Combin. Theory Ser. B 129 (2018) 55–78. https://doi.org/10.1016/j.jctb.2017.09.004
[6] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2010).
[7] E.R. van Dam, Nonregular graphs with three eigenvalues, J. Combin. Theory Ser. B 73 (1998) 101–118. https://doi.org/10.1006/jctb.1998.1815
[8] T. Koledin and Z. Stanić, On a class of strongly regular signed graphs, Publ. Math. Debrecen 97 (2020) 353–365. https://doi.org/10.5486/PMD.2020.8760
[9] L. Lovász, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979) 1–7. https://doi.org/10.1109/TIT.1979.1055985
[10] T.-T. Lu and S.-H. Shiou, Inverses of 2 × 2 block matrices, Comput. Math. Appl. 43 (2002) 119–129. https://doi.org/10.1016/S0898-1221(01)00278-4
[11] F. Ramezani, Some regular signed graphs with only two distinct eigenvalues, Linear Multilinear Algebra (2020), in press. https://doi.org/10.1080/03081087.2020.1736979
[12] F. Ramezani and Y. Bagheri, Constructing strongly regular signed graphs, Ars. Combin., in press.
[13] F. Ramezani, P. Rowlinson and Z. Stanić, On eigenvalue multiplicity in signed graphs, Discrete Math. 343 (2020) 111982. https://doi.org/10.1016/j.disc.2020.111982
[14] F. Ramezani, P. Rowlinson and Z. Stanić, Signed graphs with at most three eigenvalues, Czechoslovak Math. J., in press.
[15] P. Rowlinson, The main eigenvalues of a graph: A survey, Appl. Anal. Discrete Math. 1 (2007) 445–471. https://doi.org/10.2298/AADM0702445R
[16] P. Rowlinson, On graphs with just three distinct eigenvalues, Linear Algebra Appl. 507 (2016) 462–473. https://doi.org/10.1016/j.laa.2016.06.031
[17] P. Rowlinson, More on graphs with just three distinct eigenvalues, Appl. Anal. Discrete Math. 11 (2017) 74–80. https://doi.org/10.2298/AADM161111033R
[18] Z. Stanić, On strongly regular signed graphs, Discrete Appl. Math. 271 (2019) 184–190. https://doi.org/10.1016/j.dam.2019.06.017
[19] Z. Stanić, Main eigenvalues of real symmetric matrices with application to signed graphs, Czechoslovak Math. J. 70 (2020) 1091–1102. https://doi.org/10.21136/CMJ.2020.0147-19
[20] T. Zaslavsky, Matrices in the theory of signed simple graphs, in: Advances in Discrete Mathematics and Applications, Mysore 2008, B.D. Acharya, G.O.H. Katona, J. Nešetřil (Ed(s)), (Mysore, Ramanujan Math. Soc., 2010) 207–229.