Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a13, author = {Bensmail, Julien and Li, Binlong}, title = {More {Aspects} of {Arbitrarily} {Partitionable} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1237--1261}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a13/} }
Bensmail, Julien; Li, Binlong. More Aspects of Arbitrarily Partitionable Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1237-1261. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a13/
[1] D. Barth, O. Baudon and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Appl. Math. 119 (2002) 205–216. https://doi.org/10.1016/S0166-218X(00)00322-X
[2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006) 469–477. https://doi.org/10.1016/j.disc.2006.01.006
[3] O. Baudon, J. Bensmail, F. Foucaud and M. Pilśniak, Structural properties of recursively partitionable graphs with connectivity 2, Discuss. Math. Graph Theory 37 (2017) 89–115. https://doi.org/10.7151/dmgt.1925
[4] O. Baudon, F. Gilbert and M. Woźniak, Recursively arbitrarily vertex-decomposable graphs, Opuscula Math. 32 (2012) 689–706. https://doi.org//10.7494/OpMath.2012.32.4.689
[5] J. Bensmail, Partitions and decompositions of graphs, PhD. Thesis (Université de Bordeaux, France, 2014).
[6] J. Bensmai, On the complexity of partitioning a graph into a few connected subgraphs, J. Comb. Optim. 30 (2015) 174–187. https://doi.org/10.1007/s10878-013-9642-8
[7] J. Bensmail, On three polynomial kernels of sequences for arbitrarily partitionable graphs, Discrete Appl. Math. 202 (2016) 19–29. https://doi.org/10.1016/j.dam.2015.08.016
[8] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135. https://doi.org/10.1016/0012-365X(76)90078-9
[9] S. Brandt, Finding vertex decompositions in dense graphs (2013), personal communication.
[10] H. Broersma, D. Kratsch and G.J. Woeginger, Fully decomposable split graphs, European J. Combin. 34 (2013) 567–575. https://doi.org/10.1016/j.ejc.2011.09.044
[11] M. Dell’Amico and S. Martello, Reduction of the three-partition problem, J. Comb. Optim. 3 (1999) 17–30. https://doi.org/10.1023/A:1009856820553
[12] M.E. Dyer and A.M. Frieze, On the complexity of partitioning graphs into connected subgraphs, Discrete Appl. Math. 10 (1985) 139–153. https://doi.org/10.1016/0166-218X(85)90008-3
[13] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965) 449–467. https://doi.org/10.4153/CJM-1965-045-4
[14] R. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs—A survey, Discrete Math. 164 (1997) 87–147. https://doi.org/10.1016/S0012-365X(96)00045-3
[15] H. Fleischner, In the square of graphs, Hamiltonicity and pancyclicity, Hamiltonian connectedness and panconnectedness are equivalent concepts, Monatsh. Math. 82 (1976) 125–149. https://doi.org/10.1007/BF01305995
[16] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman Co., New York, 1990).
[17] E. Győri, On division of graphs to connected subgraphs, in: Combinatorics Proc. 5th Hungarian Colloq. (1976) 485–494.
[18] M. Horňák, A. Marczyk, I. Schiermeyer and M. Woźniak, Dense arbitrarily vertex decomposable graphs, Graphs Combin. 28 (2012) 807–821. https://doi.org/10.1007/s00373-011-1077-3
[19] M. Horňák, Zs. Tuza and M. Woźniak, On-line arbitrarily vertex decomposable trees, Discrete Appl. Math. 155 (2007) 1420–1429. https://doi.org/10.1016/j.dam.2007.02.011
[20] R. Kalinowski, M. Pilśniak, I. Schiermeyer and M. Woźniak, Dense arbitrarily partitionable graphs, Discuss. Math. Graph Theory 36 (2016) 5–22. https://doi.org/10.7151/dmgt.1833
[21] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar. 30 (1977) 241–251. https://doi.org/10.1007/BF01896190
[22] A. Marczyk, An Ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math. 309 (2009) 3588–3594. https://doi.org/10.1016/j.disc.2007.12.066
[23] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55. https://doi.org/10.2307/2308928
[24] R. Ravaux, Graphes arbitrairement partitionnables: propriétés structurelles et algorithmiques, Ph.D. Thesis (Université de Versailles Saint-Quentin, France, 2009).