Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a12, author = {Caro, Yair and Lauri, Josef and Zarb, Christina}, title = {On {Small} {Balanceable,} {Strongly-Balanceable} and {Omnitonal} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1219--1235}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a12/} }
TY - JOUR AU - Caro, Yair AU - Lauri, Josef AU - Zarb, Christina TI - On Small Balanceable, Strongly-Balanceable and Omnitonal Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1219 EP - 1235 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a12/ LA - en ID - DMGT_2022_42_4_a12 ER -
%0 Journal Article %A Caro, Yair %A Lauri, Josef %A Zarb, Christina %T On Small Balanceable, Strongly-Balanceable and Omnitonal Graphs %J Discussiones Mathematicae. Graph Theory %D 2022 %P 1219-1235 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a12/ %G en %F DMGT_2022_42_4_a12
Caro, Yair; Lauri, Josef; Zarb, Christina. On Small Balanceable, Strongly-Balanceable and Omnitonal Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1219-1235. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a12/
[1] C. Augspurger, M. Minter, K. Shoukry, P. Sissokho and K. Voss, Avoiding zero-sum subsequences of prescribed length over the integers (2016). arXiv:1603.03978
[2] A. Berger, An analogue of the Erdős-Ginzburg-Ziv theorem over Z, Discrete Math. 342 (2019) 815–820. https://doi.org/10.1016/j.disc.2018.11.018
[3] B. Bollobás, Extremal Graph Theory (Courier Corporation, 2004).
[4] M. Bowen, A. Hansberg, A. Montejano and A. Müyesser, Colored unavoidable patterns and balanceable graphs (2019). arXiv:1912.06302
[5] Y. Caro, A. Hansberg and A. Montejano, Amoebas (2019), in preparation.
[6] Y. Caro, A. Hansberg and A. Montejano, Unavoidable chromatic patterns in 2- colorings of the complete graph (2019). arXiv:1810.12375
[7] Y. Caro, A. Hansberg and A. Montejano, Zero-sum Km over Z and the story of K4, Graphs Combin. 35 (2019) 855–865. https://doi.org/10.1007/s00373-019-02040-3
[8] Y. Caro, A. Hansberg and A. Montejano, Zero-sum subsequences in bounded-sum {−1, 1} -sequences, J. Combin. Theory Ser. A 161 (2019) 387–419. https://doi.org/10.1016/j.jcta.2018.09.001
[9] Y. Caro and R. Yuster, On zero-sum and almost zero-sum subgraphs over , Graphs Combin. 32 (2016) 49–63. https://doi.org/10.1007/s00373-015-1541-6
[10] E.J. Cockayne and P.J. Lorimer, The Ramsey number for stripes, J. Aust. Math. Soc. 19 (1975) 252–256. https://doi.org/10.1017/S1446788700029554
[11] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Hungar. 10 (1959) 337–356. https://doi.org/10.1007/BF02024498
[12] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313–329. https://doi.org/10.1016/0012-365X(74)90151-4
[13] Z. Füredi and M. Simonovits, The history of degenerate ( bipartite ) extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25, L. Lovász, I.Z. Ruzsa and V.T. Sós (Ed(s)), (Springer, Berlin, Heidelberg, 2013) 169–264. https://doi.org/10.1007/978-3-642-39286-3_7
[14] A. Girão and B. Narayanan, Turán theorems for unavoidable patterns (2019). arXiv:1907.00964
[15] O. Pikhurko, A note on the Turán function of even cycles, Proc. Amer. Math. Soc. 140 (2012) 3687–3692. https://doi.org/10.1090/S0002-9939-2012-11274-2
[16] A. Robertson, Zero-sum analogues of van der Waerden’s theorem on arithmetic progressions, J. Comb. 11 (2020) 231–248. https://doi.org/10.4310/JOC.2020.v11.n2.a1
[17] A. Robertson, Zero-sum generalized Schur numbers (2018). arXiv:1802.03382
[18] A. Sun, Zero-sum subsequences in bounded-sum {− r, s } -sequences (2019). arXiv:1907.06623
[19] D.B. West, Introduction to Graph Theory (Math. Classics, Pearson, 2017).