Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a11, author = {Deng, Kecai and Li, Yunfei}, title = {Antimagic {Labeling} of {Some} {Biregular} {Bipartite} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1205--1218}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a11/} }
Deng, Kecai; Li, Yunfei. Antimagic Labeling of Some Biregular Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1205-1218. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a11/
[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are antimagic, J. Graph Theory 47 (2004) 297–309. https://doi.org/10.1002/jgt.20027
[2] F. Chang, Y.C. Liang, Z. Pan and X. Zhu, Antimagic labeling of regular graphs, J. Graph Theory 82 (2016) 339–349. https://doi.org/10.1002/jgt.21905
[3] D.W. Cranston, Regular bipartite graphs are antimagic, J. Graph Theory 60 (2009) 173–182. https://doi.org/10.1002/jgt.20347
[4] D.W. Cranston, Y.C. Liang and X. Zhu, Regular graphs of odd degree are antimagic, J. Graph Theory 80 (2015) 28–33. https://doi.org/10.1002/jgt.21836
[5] K.C. Deng and Y.F. Li, Caterpillars with maximum degree 3 are antimagic, Discrete Math. 342 (2019) 1799–1801. https://doi.org/10.1016/j.disc.2019.02.021
[6] T. Eccles, Graphs of large linear size are antimagic, J. Graph Theory 81 (2016) 236–261. https://doi.org/10.1002/jgt.21872
[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2018) #DS6. https://doi.org/10.37236/27
[8] N. Hartsfield and G. Ringel, Super magic and antimagic graphs, J. Recreat. Math. 21 (1989) 107–115.
[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, INC, Boston, 1990) 108–109.
[10] G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009) 2010–2014. https://doi.org/10.1016/j.disc.2008.04.012
[11] Y.-C. Liang, T.-L. Wong and X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14. https://doi.org/10.1016/j.disc.2014.04.021
[12] Y.-C. Liang and X. Zhu, Antimagic labeling of cubic graphs, J. Graph Theory 75 (2014) 31–36. https://doi.org/10.1002/jgt.21718
[13] A. Lozano, M. Mora and C. Seara, Antimagic labelings of caterpillars, Appl. Math. Comput. 347 (2019) 734–740. https://doi.org/10.1016/j.amc.2018.11.043
[14] A. Lozano, M. Mora, C. Seara and J. Tey, Caterpillars are antimagic . arXiv:1812.06715v2
[15] V. Longani, Extension of Hall’s theorem and an algorithm for finding the (1, n )- complete matching, Thai J. Math. 6 (2008) 271–277.
[16] L. Mirsky, Transversal Theory (Academic Press, New York, 1971).
[17] J.L. Shang, Spiders are antimagic, Ars Combin. 118 (2015) 367–372.