Antimagic Labeling of Some Biregular Bipartite Graphs
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1205-1218.

Voir la notice de l'article provenant de la source Library of Science

An antimagic labeling of a graph G = (V, E) is a one-to-one mapping from E to 1, 2, . . ., |E| such that distinct vertices receive different label sums from the edges incident to them. G is called antimagic if it admits an antimagic labeling. It was conjectured that every connected graph other than K2 is antimagic. The conjecture remains open though it was verified for several classes of graphs such as regular graphs. A bipartite graph is called (k, k′)-biregular, if each vertex of one of its parts has the degree k, while each vertex of the other parts has the degree k′. This paper shows the following results. (1) Each connected (2, k)-biregular (k ≥ 3) bipartite graph is antimagic; (2) Each (k, pk)-biregular (k ≥ 3, p ≥ 2) bipartite graph is antimagic; (3) Each (k, k2 + y)-biregular (k ≥ 3, y ≥ 1) bipartite graph is antimagic.
Keywords: antimagic labeling, bipartite, biregular
@article{DMGT_2022_42_4_a11,
     author = {Deng, Kecai and Li, Yunfei},
     title = {Antimagic {Labeling} of {Some} {Biregular} {Bipartite} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1205--1218},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a11/}
}
TY  - JOUR
AU  - Deng, Kecai
AU  - Li, Yunfei
TI  - Antimagic Labeling of Some Biregular Bipartite Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1205
EP  - 1218
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a11/
LA  - en
ID  - DMGT_2022_42_4_a11
ER  - 
%0 Journal Article
%A Deng, Kecai
%A Li, Yunfei
%T Antimagic Labeling of Some Biregular Bipartite Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1205-1218
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a11/
%G en
%F DMGT_2022_42_4_a11
Deng, Kecai; Li, Yunfei. Antimagic Labeling of Some Biregular Bipartite Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1205-1218. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a11/

[1] N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are antimagic, J. Graph Theory 47 (2004) 297–309. https://doi.org/10.1002/jgt.20027

[2] F. Chang, Y.C. Liang, Z. Pan and X. Zhu, Antimagic labeling of regular graphs, J. Graph Theory 82 (2016) 339–349. https://doi.org/10.1002/jgt.21905

[3] D.W. Cranston, Regular bipartite graphs are antimagic, J. Graph Theory 60 (2009) 173–182. https://doi.org/10.1002/jgt.20347

[4] D.W. Cranston, Y.C. Liang and X. Zhu, Regular graphs of odd degree are antimagic, J. Graph Theory 80 (2015) 28–33. https://doi.org/10.1002/jgt.21836

[5] K.C. Deng and Y.F. Li, Caterpillars with maximum degree 3 are antimagic, Discrete Math. 342 (2019) 1799–1801. https://doi.org/10.1016/j.disc.2019.02.021

[6] T. Eccles, Graphs of large linear size are antimagic, J. Graph Theory 81 (2016) 236–261. https://doi.org/10.1002/jgt.21872

[7] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2018) #DS6. https://doi.org/10.37236/27

[8] N. Hartsfield and G. Ringel, Super magic and antimagic graphs, J. Recreat. Math. 21 (1989) 107–115.

[9] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, INC, Boston, 1990) 108–109.

[10] G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009) 2010–2014. https://doi.org/10.1016/j.disc.2008.04.012

[11] Y.-C. Liang, T.-L. Wong and X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14. https://doi.org/10.1016/j.disc.2014.04.021

[12] Y.-C. Liang and X. Zhu, Antimagic labeling of cubic graphs, J. Graph Theory 75 (2014) 31–36. https://doi.org/10.1002/jgt.21718

[13] A. Lozano, M. Mora and C. Seara, Antimagic labelings of caterpillars, Appl. Math. Comput. 347 (2019) 734–740. https://doi.org/10.1016/j.amc.2018.11.043

[14] A. Lozano, M. Mora, C. Seara and J. Tey, Caterpillars are antimagic . arXiv:1812.06715v2

[15] V. Longani, Extension of Hall’s theorem and an algorithm for finding the (1, n )- complete matching, Thai J. Math. 6 (2008) 271–277.

[16] L. Mirsky, Transversal Theory (Academic Press, New York, 1971).

[17] J.L. Shang, Spiders are antimagic, Ars Combin. 118 (2015) 367–372.