Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a10, author = {Bai, Xuqing and Chang, Renying and Huang, Zhong and Li, Xueliang}, title = {More on the {Rainbow} {Disconnection} in {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1185--1204}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a10/} }
TY - JOUR AU - Bai, Xuqing AU - Chang, Renying AU - Huang, Zhong AU - Li, Xueliang TI - More on the Rainbow Disconnection in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1185 EP - 1204 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a10/ LA - en ID - DMGT_2022_42_4_a10 ER -
Bai, Xuqing; Chang, Renying; Huang, Zhong; Li, Xueliang. More on the Rainbow Disconnection in Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1185-1204. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a10/
[1] S. Akbari, D. Cariolaro, M. Chavooshi, M. Ghanbari and S. Zare, Some criteria for a graph to be Class 1, Discrete Math. 312 (2012) 2593–2598. https://doi.org/10.1016/j.disc.2011.09.035
[2] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013) 466–546. https://doi.org/10.1016/j.dam.2011.12.018
[3] T. Beşeri, Edge Coloring of a Graph (İzmir Institute of Technology, İzmir, Turkey, 2004).
[4] J.A. Bondy and U.S.R. Murty, Graph Theory (Grad. Texts in Math. 244 Springer-Verlag, London, 2008).
[5] S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster, Hardness and algorithms for rainbow connectivity, J. Comb. Optim. 21 (2011) 330–347. https://doi.org/10.1007/s10878-009-9250-9
[6] G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi and P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38 (2018) 1007–1021. https://doi.org/10.7151/dmgt.2061
[7] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85–98.
[8] L. Chen, X. Li and H. Lian, Nordhaus-Gaddum type theorem for rainbow connection number of graphs, Graphs Combin. 29 (2013) 1235–1247. https://doi.org/10.1007/s00373-012-1183-x
[9] A.G. Chetwynd and A.J.W. Hilton, Regular graphs of high degree are 1 -factorizable, Proc. Lond. Math. Soc. (3) 50 (1985) 193–206. https://doi.org/10.1112/plms/s3-50.2.193
[10] G.A. Dirac, A property of 4 -chromatic graphs and remarks on critical graphs, J. Lond. Math. Soc. 27 (1952) 85–92. https://doi.org/10.1112/jlms/s1-27.1.85
[11] G.A. Dirac, Circuits in critical graphs, Monatsh. Math. 59 (1955) 178–187. https://doi.org/10.1007/BF01303792
[12] P. Elias, A. Feinstein and C.E. Shannon, A note on the maximum flow through a network, IEE Trans. Inform. Theory, IT 2 (1956) 117–119. https://doi.org/10.1109/TIT.1956.1056816
[13] L.R. Ford Jr. and D.R. Fulkerson, Maximal flow through a network, Canad. J. Math. 8 (1956) 399–404. https://doi.org/10.4153/CJM-1956-045-5
[14] F. Harary and T.W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155 (1996) 99–105. https://doi.org/10.1016/0012-365X(94)00373-Q
[15] A. Hellwig and L. Volkmann, The connectivity of a graph and its complement, Discrete Appl. Math. 156 (2008) 3325–3328. https://doi.org/10.1016/j.dam.2008.05.012
[16] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981) 718–720. https://doi.org/10.1137/0210055
[17] X. Li, Y. Shi and Y. Sun, Rainbow connections of graphs: A survey, Graphs Combin. 29 (2013) 1–38. https://doi.org/10.1007/s00373-012-1243-2
[18] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer Briefs Math. Springer, New York, 2012). https://doi.org/10.1007/978-1-4614-3119-0
[19] X. Li and Y. Sun, An updated survey on rainbow connections of graphs—a dynamic survey, Theory Appl. Graphs 0 (2017) Art. 3. https://doi.org/10.20429/tag.2017.000103
[20] W. Mader, Ein Extremalproblem des Zusammenhangs von Graphen, Math. Z. 131 (1973) 223–231. https://doi.org/10.1007/BF01187240
[21] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175–177. https://doi.org/10.2307/2306658
[22] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz. 3 (1964) 25–30, in Russian.