Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_4_a1, author = {Ikegami, Daiki and Nakamoto, Atsuhiro}, title = {Flippable {Edges} in {Triangulations} on {Surfaces}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1041--1059}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a1/} }
Ikegami, Daiki; Nakamoto, Atsuhiro. Flippable Edges in Triangulations on Surfaces. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1041-1059. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a1/
[1] D. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser. B 33 (1982) 222–230. https://doi.org/10.1016/0095-8956(82)90041-7
[2] D.W. Barnette and A.L. Edelson, All 2 -manifolds have finitely many minimal triangulations, Israel J. Math. 67 (1989) 123–128. https://doi.org/10.1007/BF02764905
[3] A. Boulch, É. Colin de Verdière and A. Nakamoto, Irreducible triangulations of surfaces with boundary, Graphs Combin. 29 (2013) 1675–1688. https://doi.org/10.1007/s00373-012-1244-1
[4] R. Brunet, A. Nakamoto and S. Negami, Diagonal flips of triangulations on closed surfaces preserving specified properties, J. Combin. Theory Ser. B 68 (1996) 295–309. https://doi.org/10.1006/jctb.1996.0070
[5] A.K. Dewdney, Wagner’s theorem for torus graphs, Discrete Math. 4 (1973) 139–149. https://doi.org/10.1016/0012-365X(73)90076-9
[6] Z. Gao, L.B. Richmond and C. Thomassen, Irreducible triangulations and triangular embeddings on a surface, CORR 91-07, University of Waterloo.
[7] Z. Gao, J. Urrutia and J. Wang, Diagonal flips in labelled planar triangulations, Graphs Combin. 17 (2001) 647–657. https://doi.org/10.1007/s003730170006
[8] G. Joret and D.R. Wood, Irreducible triangulations are small, J. Combin. Theory Ser. B 100 (2010) 446–455. https://doi.org/10.1016/j.jctb.2010.01.004
[9] H. Komuro, A. Nakamoto and S. Negami, Diagonal flips in triangulations on closed surfaces with minimum degree at least 4, J. Combin. Theory Ser. B 76 (1999) 68–92. https://doi.org/10.1006/jctb.1998.1889
[10] S. Lawrencenko, The irreducible triangulations of the torus, Ukrain. Geom. Sb. 30 (1987) 52–62.
[11] S. Lawrencenko and S. Negami, Constructing the graphs that triangulate both the torus and the Klein Bottle, J. Combin. Theory Ser. B 77 (1999) 211–218. https://doi.org/10.1006/jctb.1999.1920
[12] R. Mori, A. Nakamoto and K. Ota, Diagonal flips in Hamiltonian triangulations on the sphere, Graphs Combin. 19 (2003) 413–418. https://doi.org/10.1007/s00373-002-0508-6
[13] A. Nakamoto and S. Negami, Generating triangulations on closed surfaces with minimum degree at least 4, Discrete Math. 244 (2002) 345–349. https://doi.org/10.1016/S0012-365X(01)00093-0
[14] S. Negami, Diagonal flips in triangulations of surfaces, Discrete Math. 135 (1994) 225-232. https://doi.org/10.1016/0012-365X(93)E0101-9
[15] A. Nakamoto and K. Ota, Note on irreducible triangulations of surfaces, J. Graph Theory 20 (1995) 227–233. https://doi.org/10.1002/jgt.3190200211
[16] S. Negami and S. Watanabe, Diagonal transformations of triangulations on surfaces, Tsukuba J. Math. 14 (1990) 155–166. https://doi.org/10.21099/tkbjm/1496161326
[17] E. Steinitz and H. Rademacher, Vorlesungen über die Theoric der Polyeder (Springer, Berlin, 1934).
[18] T. Sulanke, Note on the irreducible triangulations of the Klein bottle, J. Combin. Theory Ser. B 96 (2006) 964–972. https://doi.org/10.1016/j.jctb.2006.05.001
[19] T. Sulanke, Generating irreducible triangulations of surfaces, preprint.
[20] K. Wagner, Bemerkungen zum Vierfarbenproblem, J. der Deut. Math. Ver. 46, Abt. 1 (1936) 26–32.