Flippable Edges in Triangulations on Surfaces
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1041-1059

Voir la notice de l'article provenant de la source Library of Science

Concerning diagonal flips on triangulations, Gao et al. showed that any triangulation G on the sphere with n ≥ 5 vertices has at least n − 2 flippable edges. Furthermore, if G has minimum degree at least 4 and n ≥ 9, then G has at least 2n + 3 flippable edges. In this paper, we give a simpler proof of their results, and extend them to the case of the projective plane, the torus and the Klein bottle. Finally, we give an estimation for the number of flippable edges of a triangulation on general surfaces, using the notion of irreducible triangulations.
Keywords: triangulation, diagonal flip, surface
@article{DMGT_2022_42_4_a1,
     author = {Ikegami, Daiki and Nakamoto, Atsuhiro},
     title = {Flippable {Edges} in {Triangulations} on {Surfaces}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1041--1059},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a1/}
}
TY  - JOUR
AU  - Ikegami, Daiki
AU  - Nakamoto, Atsuhiro
TI  - Flippable Edges in Triangulations on Surfaces
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1041
EP  - 1059
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a1/
LA  - en
ID  - DMGT_2022_42_4_a1
ER  - 
%0 Journal Article
%A Ikegami, Daiki
%A Nakamoto, Atsuhiro
%T Flippable Edges in Triangulations on Surfaces
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1041-1059
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a1/
%G en
%F DMGT_2022_42_4_a1
Ikegami, Daiki; Nakamoto, Atsuhiro. Flippable Edges in Triangulations on Surfaces. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1041-1059. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a1/