Distance-Local Rainbow Connection Number
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1027-1039.

Voir la notice de l'article provenant de la source Library of Science

Under an edge coloring (not necessarily proper), a rainbow path is a path whose edge colors are all distinct. The d-local rainbow connection number lrcd(G) (respectively, d-local strong rainbow connection number lsrcd(G)) is the smallest number of colors needed to color the edges of G such that any two vertices with distance at most d can be connected by a rainbow path (respectively, rainbow geodesic). This generalizes rainbow connection numbers, which are the special case d = diam(G). We discuss some bounds and exact values. Moreover, we also characterize all triples of positive integers d, a, b such that there is a connected graph G with lrcd(G) = a and lsrcd(G) = b.
Keywords: rainbow connection, chromatic number, line graph
@article{DMGT_2022_42_4_a0,
     author = {Septyanto, Fendy and Sugeng, Kiki A.},
     title = {Distance-Local {Rainbow} {Connection} {Number}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {1027--1039},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a0/}
}
TY  - JOUR
AU  - Septyanto, Fendy
AU  - Sugeng, Kiki A.
TI  - Distance-Local Rainbow Connection Number
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 1027
EP  - 1039
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a0/
LA  - en
ID  - DMGT_2022_42_4_a0
ER  - 
%0 Journal Article
%A Septyanto, Fendy
%A Sugeng, Kiki A.
%T Distance-Local Rainbow Connection Number
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 1027-1039
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a0/
%G en
%F DMGT_2022_42_4_a0
Septyanto, Fendy; Sugeng, Kiki A. Distance-Local Rainbow Connection Number. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 4, pp. 1027-1039. http://geodesic.mathdoc.fr/item/DMGT_2022_42_4_a0/

[1] R.P. Carpentier, H. Liu, M. Silva and T. Sousa, Rainbow connection for some families of hypergraphs, Discrete Math. 327 (2014) 40–50. https://doi.org/10.1016/j.disc.2014.03.013

[2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection number of graphs, Math. Bohem. 133 (2008) 85–98.

[3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54 (2009) 75–81. https://doi.org/10.1002/net.20296

[4] G. Chartrand, F. Okamoto and P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (2010) 360–367. https://doi.org/10.1002/net.20339

[5] X. Chen and X. Li, A solution to a conjecture on the rainbow connection number, Ars Combin. 104 (2012) 193–196.

[6] P. Dorbec, I. Schiermeyer, E. Sidorowicz and É. Sopena, Rainbow connection in oriented graphs, Discrete Appl. Math. 179 (2014) 69–78. https://doi.org/10.1016/j.dam.2014.07.018

[7] A.B. Ericksen, A matter of security, Graduating Engineer and Computer Careers (2007) 24–28.

[8] M. Krivelevich and R. Yuster, The rainbow connection of a graph is ( at most ) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191. https://doi.org/10.1002/jgt.20418

[9] X. Li and Y. Sun, Rainbow Connections of Graphs (Springer, Boston, 2012). https://doi.org/10.1007/978-1-4614-3119-0

[10] X. Li and Y. Sun, An updated survey of rainbow connections of graphs—a dynamic survey, Theory Appl. Graphs 0 (2017) Article 3. https://doi.org/10.20429/tag.2017.000103

[11] F. Septyanto and K. A. Sugeng, Color code techniques in rainbow connection, Electron. J. Graph Theory Appl. 6 (2018) 347–361. https://doi.org//10.5614/ejgta.2018.6.2.14

[12] Y. Sun, On rainbow total-coloring of a graph, Discrete Appl. Math. 194 (2015) 171–177. https://doi.org/10.1016/j.dam.2015.05.012