Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a8, author = {Austin, Andrea D. and Wagner, Brian C.}, title = {Ascending {Subgraph} {Decompositions} of {Oriented} {Graphs} that {Factor} into {Triangles}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {811--822}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a8/} }
TY - JOUR AU - Austin, Andrea D. AU - Wagner, Brian C. TI - Ascending Subgraph Decompositions of Oriented Graphs that Factor into Triangles JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 811 EP - 822 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a8/ LA - en ID - DMGT_2022_42_3_a8 ER -
%0 Journal Article %A Austin, Andrea D. %A Wagner, Brian C. %T Ascending Subgraph Decompositions of Oriented Graphs that Factor into Triangles %J Discussiones Mathematicae. Graph Theory %D 2022 %P 811-822 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a8/ %G en %F DMGT_2022_42_3_a8
Austin, Andrea D.; Wagner, Brian C. Ascending Subgraph Decompositions of Oriented Graphs that Factor into Triangles. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 811-822. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a8/
[1] Y. Alavi, A.J. Boals, G. Chartrand, P. Erdős and O. Oellermann, The ascending subgraph decomposition problem, Congr. Numer. 58 (1987) 7–14.
[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, 4th Ed. (Chapman & Hall/CRC, Boca Raton, 2005).
[3] H.-L. Fu and W.-H. Hu, Ascending subgraph decompositions of regular graphs, Discrete Math. 253 (2002) 11–18. https://doi.org/10.1016/S0012-365X(01)00445-9
[4] C. Huang, A. Kotzig and A. Rosa, On a variation of the Oberwolfach problem, Discrete Math. 27 (1979) 261–277. https://doi.org/10.1016/0012-365X(79)90162-6
[5] J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003) 20–34. https://doi.org/10.1016/S0097-3165(02)00011-0
[6] J. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
[7] B.C. Wagner, Ascending subgraph decompositions of tournaments of order 6 n + 3, Graphs Combin. 29 (2013) 1951–1959. https://doi.org/10.1007/s00373-012-1236-1
[8] B.C. Wagner, Ascending subgraph decompositions of tournaments of orders 6 n + 2 and 6 n + 1, Graphs Combin. 32 (2016) 813–822. https://doi.org/10.1007/s00373-015-1591-9
[9] B.C. Wagner, Ascending subgraph decompositions in oriented complete balanced tripartite graphs, Graphs Combin. 29 (2013) 1549–1555. https://doi.org/10.1007/s00373-012-1208-5