Oriented Chromatic Number of Cartesian Products $ P_m \square P_n $ and $ C_m \square P_n $
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 799-810

Voir la notice de l'article provenant de la source Library of Science

We consider oriented chromatic number of Cartesian products of two paths P_m □ P_n and of Cartesian products of paths and cycles, C_m □ P_n. We say that the oriented graph G is colored by an oriented graph H if there is a homomorphism from G to H. In this paper we show that there exists an oriented tournament H_10 with ten vertices which colors every orientation of P_8 □ P_n and every orientation of C_m □ P_n, for m = 3, 4, 5, 6, 7 and n ≥ 1. We also show that there exists an oriented graph T_16 with sixteen vertices which colors every orientation of C_m □ P_n.
Keywords: graphs, oriented coloring, oriented chromatic number
@article{DMGT_2022_42_3_a7,
     author = {Nenca, Anna},
     title = {Oriented {Chromatic} {Number} of {Cartesian} {Products} $ P_m \square P_n $ and $ C_m \square P_n $},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {799--810},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/}
}
TY  - JOUR
AU  - Nenca, Anna
TI  - Oriented Chromatic Number of Cartesian Products $ P_m \square P_n $ and $ C_m \square P_n $
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 799
EP  - 810
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/
LA  - en
ID  - DMGT_2022_42_3_a7
ER  - 
%0 Journal Article
%A Nenca, Anna
%T Oriented Chromatic Number of Cartesian Products $ P_m \square P_n $ and $ C_m \square P_n $
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 799-810
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/
%G en
%F DMGT_2022_42_3_a7
Nenca, Anna. Oriented Chromatic Number of Cartesian Products $ P_m \square P_n $ and $ C_m \square P_n $. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 799-810. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/