Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a7, author = {Nenca, Anna}, title = {Oriented {Chromatic} {Number} of {Cartesian} {Products} $ P_m \square P_n $ and $ C_m \square P_n $}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {799--810}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/} }
TY - JOUR AU - Nenca, Anna TI - Oriented Chromatic Number of Cartesian Products $ P_m \square P_n $ and $ C_m \square P_n $ JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 799 EP - 810 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/ LA - en ID - DMGT_2022_42_3_a7 ER -
Nenca, Anna. Oriented Chromatic Number of Cartesian Products $ P_m \square P_n $ and $ C_m \square P_n $. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 799-810. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a7/
[1] H. Bielak, The oriented chromatic number of some grids, Ann. UMCS Inform. AI. 5 (2006) 5–17.
[2] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77–89. https://doi.org/10.1016/S0012-365X(98)00393-8
[3] J. Dybizbański and A. Nenca, Oriented chromatic number of grids is greater than 7, Inform. Process. Lett. 112 (2012) 113–117. https://doi.org/10.1016/j.ipl.2011.10.019
[4] J. Dybizbański and A. Nenca, Oriented chromatic number of Cartesian products and strong products of paths, Discuss. Math. Graph Theory 39 (2019) 211–223. https://doi.org/10.7151/dmgt.2074
[5] J. Dybizbański and A. Szepietowski, The oriented chromatic number of Halin graphs, Inform. Process. Lett. 114 (2014) 45–49. https://doi.org/10.1016/j.ipl.2013.09.011
[6] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Inform. Process. Lett. 85 (2003) 261–266. https://doi.org/10.1016/S0020-0190(02)00405-2
[7] E. Fried, On homogeneous tournaments, Combin. Theory Appl. 2 (1970) 467–476.
[8] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of graphs with given excess, Discrete Math. 306 (2006) 1342–1350. https://doi.org/10.1016/j.disc.2005.12.023
[9] M. Hosseini Dolama and É. Sopena, On the oriented chromatic number of Halin graphs, Inform. Process. Lett. 98 (2006) 247–252. https://doi.org/10.1016/j.ipl.2005.03.016
[10] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331–340. https://doi.org/10.1002/(SICI)1097-0118(199704)24:4¡331::AID-JGT5¿3.0.CO;2-P
[11] A. Pinlou, An oriented coloring of planar graphs with girth at least five, Discrete Math. 309 (2009) 2108–2118. https://doi.org/10.1016/j.disc.2008.04.030
[12] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Inform. Proc. Letters 100 (2006) 97–104. https://doi.org/10.1016/j.ipl.2006.06.012
[13] T. Rapke, Oriented and injective oriented colourings of grid graphs, J. Combin. Math. Combin. Comput. 89 (2014) 169–196.
[14] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Inform. Process. Lett. 51 (1994) 171–174. https://doi.org/10.1016/0020-0190(94)00088-3
[15] É. Sopena, Homomorphisms and colourings of oriented graphs: An updated survey, Discrete Math. 339 (2016) 1993–2005. https://doi.org/10.1016/j.disc.2015.03.018
[16] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359–369. https://doi.org/10.1016/S0012-365X(00)00216-8
[17] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191–205. https://doi.org/10.1002/(SICI)1097-0118(199707)25:3¡191::AID-JGT3¿3.0.CO;2-G
[18] É. Sopena, There exist oriented planar graphs with oriented chromatic number at least sixteen, Inform. Process. Lett. 81 (2002) 309–312. https://doi.org/10.1016/S0020-0190(01)00246-0
[19] É. Sopena, Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs, Discuss. Math. Graph Theory 32 (2012) 517–583. https://doi.org/10.7151/dmgt.1624
[20] É. Sopena and L. Vignal, A Note on the Oriented Chromatic Number of Graphs with Maximum Degree Three, Research Report, (Bordeaux I University, 1996).
[21] A. Szepietowski, Coloring directed cycles . arXiv:1307.5186
[22] A. Szepietowski and M. Targan, A note on the oriented chromatic number of grids, Inform. Process. Lett. 92 (2004) 65–70. https://doi.org/10.1016/j.ipl.2004.06.014