Graphs with Unique Maximum Packing of Closed Neighborhoods
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 779-797

Voir la notice de l'article provenant de la source Library of Science

A packing of a graph G is a subset P of the vertex set of G such that the closed neighborhoods of any two distinct vertices of P do not intersect. We study graphs with a unique packing of the maximum cardinality. We present several general properties for such graphs. These properties are used to characterize the trees with a unique maximum packing. Two characterizations are presented where one of them is inductive based on five operations.
Keywords: unique maximum packing, closed neighborhoods, trees
@article{DMGT_2022_42_3_a6,
     author = {Bo\v{z}ovi\'c, Dragana and Peterin, Iztok},
     title = {Graphs with {Unique} {Maximum} {Packing} of {Closed} {Neighborhoods}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {779--797},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/}
}
TY  - JOUR
AU  - Božović, Dragana
AU  - Peterin, Iztok
TI  - Graphs with Unique Maximum Packing of Closed Neighborhoods
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 779
EP  - 797
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/
LA  - en
ID  - DMGT_2022_42_3_a6
ER  - 
%0 Journal Article
%A Božović, Dragana
%A Peterin, Iztok
%T Graphs with Unique Maximum Packing of Closed Neighborhoods
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 779-797
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/
%G en
%F DMGT_2022_42_3_a6
Božović, Dragana; Peterin, Iztok. Graphs with Unique Maximum Packing of Closed Neighborhoods. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 779-797. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/