Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a6, author = {Bo\v{z}ovi\'c, Dragana and Peterin, Iztok}, title = {Graphs with {Unique} {Maximum} {Packing} of {Closed} {Neighborhoods}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {779--797}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/} }
TY - JOUR AU - Božović, Dragana AU - Peterin, Iztok TI - Graphs with Unique Maximum Packing of Closed Neighborhoods JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 779 EP - 797 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/ LA - en ID - DMGT_2022_42_3_a6 ER -
Božović, Dragana; Peterin, Iztok. Graphs with Unique Maximum Packing of Closed Neighborhoods. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 779-797. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/
[1] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296. https://doi.org/10.1016/0095-8956(73)90042-7
[2] B. Brešar, K. Kuenzel and D. F. Rall, Graphs with a unique maximum open packing (2019). arXiv1901.09859
[3] M.P. Dobson, E. Hinrichsen and V. Leoni, Generalized limited packings of some graphs with a limited number of P4-partners, Theoret. Comput. Sci. 579 (2015) 1–8. https://doi.org/10.1016/j.tcs.2014.11.014
[4] R.D. Dutton, Global domination and packing numbers, Ars Combin. 101 (2011) 489–501.
[5] A. Gagarin and V. Zverovich, The probabilistic approach to limited packings in graphs, Discrete Appl. Math. 184 (2015) 146–153. https://doi.org/10.1016/j.dam.2014.11.017
[6] R. Gallant, G. Gunther, B. Hartnell and D.F. Rall, Limited packings in graphs, Discrete Appl. Math. 158 (2010) 1357–1364. https://doi.org/10.1016/j.dam.2009.04.014
[7] G. Gunther, B.L. Hartnell, L.R. Markus and D.F. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55–63.
[8] T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002) 233–246. https://doi.org/10.7151/dmgt.1172
[9] M.A. Henning, C. Löwenstein and D. Rautenbach, Dominating sets, packings, and the maximum degree, Discrete Math. 311 (2011) 2031–2036. https://doi.org/10.1016/j.disc.2011.04.030
[10] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245–251. https://doi.org/10.1016/0012-365X(85)90177-3
[11] M.-J. Jou and G.J. Chang, The number of maximum independent sets in graphs, Taiwanese J. Math. 4 (2000) 685–695. https://doi.org/10.11650/twjm/1500407302
[12] K. Junosza-Szaniawski and P. Rzążewski, On the number of 2-packings in a connected graph, Discrete Math. 312 (2012) 3444–3450. https://doi.org/10.1016/j.disc.2012.02.005
[13] A.P. Kazemi, B. Pahlavsay and R.J. Stones, Cartesian product graphs and k-tuple total domination, Filomat 32 (2018) 6713–6731. https://doi.org/10.2298/FIL1819713K
[14] S. Klavžar, I. Peterin and I.G. Yero, Graphs that are simultaneously efficient open domination and efficient closed domination graphs, Discrete Appl. Math. 217 (2017) 613–621. https://doi.org/10.1016/j.dam.2016.09.027
[15] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233. https://doi.org/10.2140/pjm.1975.61.225
[16] D.A. Mojdeh, B. Samadi, A. Khodkar and H.R. Golmohammadi, On the packing numbers in graphs, Australas. J. Combin. 71 (2018) 468–475.
[17] I. Sahul Hamid and S. Saravanakumar, Packing parameters in graphs, Discuss. Math. Graph Theory 35 (2015) 5–16. https://doi.org/10.7151/dmgt.1775