Graphs with Unique Maximum Packing of Closed Neighborhoods
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 779-797.

Voir la notice de l'article provenant de la source Library of Science

A packing of a graph G is a subset P of the vertex set of G such that the closed neighborhoods of any two distinct vertices of P do not intersect. We study graphs with a unique packing of the maximum cardinality. We present several general properties for such graphs. These properties are used to characterize the trees with a unique maximum packing. Two characterizations are presented where one of them is inductive based on five operations.
Keywords: unique maximum packing, closed neighborhoods, trees
@article{DMGT_2022_42_3_a6,
     author = {Bo\v{z}ovi\'c, Dragana and Peterin, Iztok},
     title = {Graphs with {Unique} {Maximum} {Packing} of {Closed} {Neighborhoods}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {779--797},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/}
}
TY  - JOUR
AU  - Božović, Dragana
AU  - Peterin, Iztok
TI  - Graphs with Unique Maximum Packing of Closed Neighborhoods
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 779
EP  - 797
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/
LA  - en
ID  - DMGT_2022_42_3_a6
ER  - 
%0 Journal Article
%A Božović, Dragana
%A Peterin, Iztok
%T Graphs with Unique Maximum Packing of Closed Neighborhoods
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 779-797
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/
%G en
%F DMGT_2022_42_3_a6
Božović, Dragana; Peterin, Iztok. Graphs with Unique Maximum Packing of Closed Neighborhoods. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 779-797. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a6/

[1] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289–296. https://doi.org/10.1016/0095-8956(73)90042-7

[2] B. Brešar, K. Kuenzel and D. F. Rall, Graphs with a unique maximum open packing (2019). arXiv1901.09859

[3] M.P. Dobson, E. Hinrichsen and V. Leoni, Generalized limited packings of some graphs with a limited number of P4-partners, Theoret. Comput. Sci. 579 (2015) 1–8. https://doi.org/10.1016/j.tcs.2014.11.014

[4] R.D. Dutton, Global domination and packing numbers, Ars Combin. 101 (2011) 489–501.

[5] A. Gagarin and V. Zverovich, The probabilistic approach to limited packings in graphs, Discrete Appl. Math. 184 (2015) 146–153. https://doi.org/10.1016/j.dam.2014.11.017

[6] R. Gallant, G. Gunther, B. Hartnell and D.F. Rall, Limited packings in graphs, Discrete Appl. Math. 158 (2010) 1357–1364. https://doi.org/10.1016/j.dam.2009.04.014

[7] G. Gunther, B.L. Hartnell, L.R. Markus and D.F. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55–63.

[8] T.W. Haynes and M.A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002) 233–246. https://doi.org/10.7151/dmgt.1172

[9] M.A. Henning, C. Löwenstein and D. Rautenbach, Dominating sets, packings, and the maximum degree, Discrete Math. 311 (2011) 2031–2036. https://doi.org/10.1016/j.disc.2011.04.030

[10] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245–251. https://doi.org/10.1016/0012-365X(85)90177-3

[11] M.-J. Jou and G.J. Chang, The number of maximum independent sets in graphs, Taiwanese J. Math. 4 (2000) 685–695. https://doi.org/10.11650/twjm/1500407302

[12] K. Junosza-Szaniawski and P. Rzążewski, On the number of 2-packings in a connected graph, Discrete Math. 312 (2012) 3444–3450. https://doi.org/10.1016/j.disc.2012.02.005

[13] A.P. Kazemi, B. Pahlavsay and R.J. Stones, Cartesian product graphs and k-tuple total domination, Filomat 32 (2018) 6713–6731. https://doi.org/10.2298/FIL1819713K

[14] S. Klavžar, I. Peterin and I.G. Yero, Graphs that are simultaneously efficient open domination and efficient closed domination graphs, Discrete Appl. Math. 217 (2017) 613–621. https://doi.org/10.1016/j.dam.2016.09.027

[15] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233. https://doi.org/10.2140/pjm.1975.61.225

[16] D.A. Mojdeh, B. Samadi, A. Khodkar and H.R. Golmohammadi, On the packing numbers in graphs, Australas. J. Combin. 71 (2018) 468–475.

[17] I. Sahul Hamid and S. Saravanakumar, Packing parameters in graphs, Discuss. Math. Graph Theory 35 (2015) 5–16. https://doi.org/10.7151/dmgt.1775