Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a5, author = {Liang, Zuosong}, title = {Total {Coloring} of {Claw-Free} {Planar} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {771--777}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a5/} }
Liang, Zuosong. Total Coloring of Claw-Free Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 771-777. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a5/
[1] L. Andersen, Total Colouring of Simple Graphs, Master’s Thesis (University of Aalborg, 1993).
[2] M. Behzad, Graphs and Their Chromatic Numbers, PhD Thesis (Michigan State University, 1965).
[3] V.A. Bojarshinov, Edge and total coloring of interval graphs, Discrete Appl. Math. 114 (2001) 23–28. https://doi.org/10.1016/S0166-218X(00)00358-9
[4] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180–185. https://doi.org/10.1515/crll.1989.394.180
[5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (1997) 184–204. https://doi.org/10.1006/jctb.1997.1780
[6] B.-L. Chen, H.-L. Fu and M.T. Ko, Total chromatic number and chromatic index of split graphs, J. Combin. Math. Combin. Comput. 17 (1995) 137–146.
[7] C.M.H. de Figueiredo, J. Meidanis and C.P. de Mello, Total-chromatic number and chromatic index of dually chordal graphs, Inform. Process. Lett. 70 (1999) 147–152. https://doi.org/10.1016/S0020-0190(99)00050-2
[8] Ł. Kowalik, J.S. Sereni and R. Škrekovski, Total-coloring of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008) 1462–1479. https://doi.org/10.1137/070688389
[9] A.V. Kostochka, The total coloring of a multigraph with maximal degree 4, Discrete Math. 17 (1977) 161–163. https://doi.org/10.1016/0012-365X(77)90146-7
[10] A.V. Kostochka, Exact upper bound for the total chromatic number of a graph, in: Proc. 24th Int. Wiss. Koll. Tech. Hochsch. Ilmenau (1979) 33–36, in Russian.
[11] A.V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996) 199–214. https://doi.org/10.1016/0012-365X(95)00286-6
[12] M.D. Plummer, Extending matchings in claw-free graphs, Discrete Math. 125 (1994) 301–307. https://doi.org/10.1016/0012-365X(94)90171-6
[13] M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396–402. https://doi.org/10.1007/BF02771690
[14] D.P. Sanders and Y. Zhao, On total 9 -coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999) 67–73. https://doi.org/10.1002/(SICI)1097-0118(199905)31:1¡67::AID-JGT6¿3.0.CO;2-C
[15] E.F. Shan, Z.S. Liang and L.Y. Kang, Clique-transversal sets and clique-coloring in planar graphs, European J. Combin. 36 (2014) 367–376. https://doi.org/10.1016/j.ejc.2013.08.003
[16] N. Vijayaditya, On total chromatic number of a graph, J. London Math. Soc. (2) 3 (1971) 405–408. https://doi.org/10.1112/jlms/s2-3.3.405
[17] V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117–134, English translation in Russian Math. Surveys 23 (1968) 125–141, in Russian. https://doi.org/10.1070/RM1968v023n06ABEH001252
[18] W.F. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007) 91–102. https://doi.org/10.1002/jgt.20195
[19] B. Wang and J.-L. Wu, Total colorings of planar graphs with maximum degree seven and without intersecting 3 -cycles, Discrete Math. 311 (2011) 2025–2030. https://doi.org/10.1016/j.disc.2011.05.038
[20] P. Wang and J.-L. Wu, A note on total colorings of planar graphs without 4 -cycles, Discuss. Math. Graph Theory 24 (2004) 125–135. https://doi.org/10.7151/dmgt.1219
[21] H.-P. Yap, Total Colourings of Graphs, in: Lecture Notes in Math. 1623 (Springer, Berlin, Heidelberg, 1996). https://doi.org/10.1007/BFb0092895