Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a19, author = {Nazari-Moghaddam, Sakineh and Chellali, Mustapha}, title = {A {New} {Upper} {Bound} for the {Perfect} {Italian} {Domination} {Number} of a {Tree}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {1005--1022}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a19/} }
TY - JOUR AU - Nazari-Moghaddam, Sakineh AU - Chellali, Mustapha TI - A New Upper Bound for the Perfect Italian Domination Number of a Tree JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 1005 EP - 1022 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a19/ LA - en ID - DMGT_2022_42_3_a19 ER -
%0 Journal Article %A Nazari-Moghaddam, Sakineh %A Chellali, Mustapha %T A New Upper Bound for the Perfect Italian Domination Number of a Tree %J Discussiones Mathematicae. Graph Theory %D 2022 %P 1005-1022 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a19/ %G en %F DMGT_2022_42_3_a19
Nazari-Moghaddam, Sakineh; Chellali, Mustapha. A New Upper Bound for the Perfect Italian Domination Number of a Tree. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 1005-1022. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a19/
[1] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
[2] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), Springer (2020) 365–409.
[3] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)) 273–307. https://doi.org/10.1016/j.akcej.2019.12.001
[4] M. Chellai, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020) 966–984. https://doi.org/10.1016/j.akcej.2019.12.001
[5] M. Chellai, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141–171.
[6] M. Chellai, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, The Roman domatic problem in graphs and digraphs: A survey, Discuss. Math. Graph Theory, in press. https://doi.org/10.7151/dmgt.2313
[7] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[8] M. Darkooti, A. Alhevaz, S. Rahimi and H. Rahbani, On perfect Roman domination number in trees: complexity and bounds, J. Comb. Optim. 38 (2019) 712–720. https://doi.org/10.1007/s10878-019-00408-y
[9] T.W. Haynes and M.A. Henning, Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–177. https://doi.org/10.1016/j.dam.2019.01.038
[10] M.A. Henning, W.F. Klostermeyer and G. MacGillivray, Perfect Roman domination in trees, Discrete Appl. Math. 236 (2018) 235–245. https://doi.org/10.1016/j.dam.2017.10.027
[11] M. Livingston and Q.F. Stout, Perfect dominating sets, Congr. Numer. 79 (1990) 187–203.
[12] C.S. ReVelle and K.E. Rosing, Defendens Imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. https://doi.org/10.1080/00029890.2000.12005243
[13] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999) 136–139. https://doi.org/10.1038/scientificamerican1299-136