Extremal Digraphs Avoiding Distinct Walks of Length 4 with the Same Endpoints
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 985-1004.

Voir la notice de l'article provenant de la source Library of Science

Let n ≥ 8 be an integer. We characterize the extremal digraphs of order n with the maximum number of arcs avoiding distinct walks of length 4 with the same endpoints.
Keywords: digraph, Turán problems, transitive tournament, walk
@article{DMGT_2022_42_3_a18,
     author = {Lyu, Zhenhua},
     title = {Extremal {Digraphs} {Avoiding} {Distinct} {Walks} of {Length} 4 with the {Same} {Endpoints}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {985--1004},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a18/}
}
TY  - JOUR
AU  - Lyu, Zhenhua
TI  - Extremal Digraphs Avoiding Distinct Walks of Length 4 with the Same Endpoints
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 985
EP  - 1004
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a18/
LA  - en
ID  - DMGT_2022_42_3_a18
ER  - 
%0 Journal Article
%A Lyu, Zhenhua
%T Extremal Digraphs Avoiding Distinct Walks of Length 4 with the Same Endpoints
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 985-1004
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a18/
%G en
%F DMGT_2022_42_3_a18
Lyu, Zhenhua. Extremal Digraphs Avoiding Distinct Walks of Length 4 with the Same Endpoints. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 985-1004. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a18/

[1] W.G. Brown, P. Erdős and M. Simonovits, Extremal problems for directed graphs, J. Combin. Theory Ser. B 15 (1973) 77–93. https://doi.org/10.1016/0095-8956(73)90034-8

[2] W.G. Brown and F. Harary, Extremal digraphs, in: Combinatorial Theory and its Applications, I, Colloq. Math. Soc. J. Bolyai 4 (North-Holland, Amsterdam, 1970) 135–198.

[3] Z. Huang and Z. Lyu 0 − 1 matrices whose k-th powers have bounded entries, Linear Multilinear Algebra 68 (2020) 1972–1982. https://doi.org/10.1080/03081087.2019.1567671

[4] Z. Huang, Z. Lyu and P. Qiao, A Turán problem on digraphs avoiding distinct walks of a given length with the same endpoints, Discrete Math. 342 (2019) 1703–1717. https://doi.org/10.1016/j.disc.2019.02.002

[5] Z. Huang and X. Zhan, Digraphs that have at most one walk of a given length with the same endpoints, Discrete Math. 311 (2011) 70–79. https://doi.org/10.1016/j.disc.2010.09.025

[6] H. Wu, On the 0 − 1 matrices whose squares are 0 − 1 matrices, Linear Algebra Appl. 432 (2010) 2909–2924. https://doi.org/10.1016/j.laa.2009.12.033

[7] X. Zhan, Matrix Theory, Grad. Stud. Math. 147 (Amer. Math. Soc., Providence, 2013). https://doi.org/10.1090/gsm/147