Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a17, author = {Mart{\'\i}nez, Abel Cabrera and Rodr{\'\i}guez-Vel\'azquez, Juan Alberto}, title = {Total {Protection} of {Lexicographic} {Product} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {967--984}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a17/} }
TY - JOUR AU - Martínez, Abel Cabrera AU - Rodríguez-Velázquez, Juan Alberto TI - Total Protection of Lexicographic Product Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 967 EP - 984 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a17/ LA - en ID - DMGT_2022_42_3_a17 ER -
%0 Journal Article %A Martínez, Abel Cabrera %A Rodríguez-Velázquez, Juan Alberto %T Total Protection of Lexicographic Product Graphs %J Discussiones Mathematicae. Graph Theory %D 2022 %P 967-984 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a17/ %G en %F DMGT_2022_42_3_a17
Martínez, Abel Cabrera; Rodríguez-Velázquez, Juan Alberto. Total Protection of Lexicographic Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 967-984. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a17/
[1] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. https://doi.org/10.1016/j.dam.2016.03.017
[2] S. Benecke, E.J. Cockayne and C.M. Mynhardt, Secure total domination in graphs, Util. Math. 74 (2007) 247–259.
[3] S. Benecke, E.J. Cockayne and C.M. Mynhardt, Total protection of a graph, unpublished manuscript.
[4] R. Brigham, J. Carrington and R. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000) 81–96.
[5] A. Cabrera Martínez, L.P. Montejano and J.A. Rodríguez-Velázquez, Total weak Roman domination in graphs, Symmetry 11 (2019) No. 831. https://doi.org/10.3390/sym11060831
[6] A. Cabrera Martínez and J.A. Rodríguez-Velázquez, On the secure total domination number of graphs, Symmetry 11 (2019) No. 1165. https://doi.org/10.3390/sym11091165
[7] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
[8] M. Chellali, T.W. Haynes and S.T. Hedetniemi, Bounds on weak Roman and 2- rainbow domination numbers, Discrete Appl. Math. 178 (2014) 27–32. https://doi.org/10.1016/j.dam.2014.06.016
[9] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[10] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211–219. https://doi.org/10.1002/net.3230100304
[11] E.J. Cockayne, O. Favaron and C.M. Mynhardt, Secure domination, weak Roman domination and forbidden subgraphs, Bull. Inst. Combin. Appl. 39 (2003) 87–100.
[12] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
[13] O. Duginov, Secure total domination in graphs: Bounds and complexity, Discrete Appl. Math. 222 (2017) 97–108. https://doi.org/10.1016/j.dam.2016.08.018
[14] T.W. Haynes and M.A. Henning, Perfect Italian domination in trees, Discrete Appl. Math. 260 (2019) 164–177. https://doi.org/10.1016/j.dam.2019.01.038
[15] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Taylor & Francis, 1998).
[16] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[17] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017) 557–564. https://doi.org/10.1016/j.dam.2016.09.035
[18] M.A. Henning and S.T. Hedetniemi, Defending the Roman Empire—A new strategy, Discrete Math. 266 (2003) 239–251. https://doi.org/10.1016/S0012-365X(02)00811-7
[19] M.A. Henning and A. Yeo, Total Domination in Graphs (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6525-6
[20] W.F. Klostermeyer and C.M. Mynhardt, Secure domination and secure total domination in graphs, Discuss. Math. Graph Theory 28 (2008) 267–284. https://doi.org/10.7151/dmgt.1405
[21] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225–233. https://doi.org/10.2140/pjm.1975.61.225
[22] M. Valveny, H. Pérez-Rosés and J.A. Rodríguez-Velázquez, On the weak Roman domination number of lexicographic product graphs, Discrete Appl. Math. 263 (2019) 257–270. https://doi.org/10.1016/j.dam.2018.03.039
[23] I. Stewart, Defend the Roman Empire !, Sci. Amer. 281 (1999) 136–138. https://doi.org/10.1038/scientificamerican1299-136