Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a16, author = {Lozano, Antoni and Mora, Merc\`e and Seara, Carlos and Tey, Joaqu{\'\i}n}, title = {Trees {Whose} {Even-Degree} {Vertices} {Induce} a {Path} are {Antimagic}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {959--966}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a16/} }
TY - JOUR AU - Lozano, Antoni AU - Mora, Mercè AU - Seara, Carlos AU - Tey, Joaquín TI - Trees Whose Even-Degree Vertices Induce a Path are Antimagic JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 959 EP - 966 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a16/ LA - en ID - DMGT_2022_42_3_a16 ER -
%0 Journal Article %A Lozano, Antoni %A Mora, Mercè %A Seara, Carlos %A Tey, Joaquín %T Trees Whose Even-Degree Vertices Induce a Path are Antimagic %J Discussiones Mathematicae. Graph Theory %D 2022 %P 959-966 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a16/ %G en %F DMGT_2022_42_3_a16
Lozano, Antoni; Mora, Mercè; Seara, Carlos; Tey, Joaquín. Trees Whose Even-Degree Vertices Induce a Path are Antimagic. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 959-966. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a16/
[1] F.H. Chang, P. Chin, W.T. Li and Z. Pan, The strongly antimagic labelings of double spiders, (2017). arXiv:1712.09477
[2] G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs (CRC Press Boca Raton, 2011).
[3] K. Deng and Y. Li, Caterpillars with maximum degree 3 are antimagic, Discrete Math. 342 (2019) 1799–1801. https://doi.org/10.1016/j.disc.2019.02.021
[4] J.A. Gallian, Graph labeling, Electron. J. Combin. (2018) #DS6. https://doi.org/10.37236/27
[5] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press INC., Boston, 1990) (revised version, 1994)
[6] G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic trees, Discrete Math. 309 (2009) 2010–2014. https://doi.org/10.1016/j.disc.2008.04.012
[7] Y.-Ch. Liang, T.-L. Wong and X. Zhu, Anti-magic labeling of trees, Discrete Math. 331 (2014) 9–14. https://doi.org/10.1016/j.disc.2014.04.021
[8] A. Lozano, M. Mora and C. Seara, Antimagic labelings of caterpillars, Appl. Math. Comput. 347 (2019) 734–740. https://doi.org/10.1016/j.amc.2018.11.043
[9] A. Lozano, M. Mora, C. Seara and J. Tey, Caterpillars are antimagic, (2018). arXiv:1812.06715
[10] J.L. Shang, Spiders are antimagic, Ars Combin. 118 (2015) 367–372.