Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a14, author = {Caro, Yair and Davila, Randy and Pepper, Ryan}, title = {New {Results} {Relating} {Independence} and {Matchings}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {921--935}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a14/} }
TY - JOUR AU - Caro, Yair AU - Davila, Randy AU - Pepper, Ryan TI - New Results Relating Independence and Matchings JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 921 EP - 935 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a14/ LA - en ID - DMGT_2022_42_3_a14 ER -
Caro, Yair; Davila, Randy; Pepper, Ryan. New Results Relating Independence and Matchings. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 921-935. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a14/
[1] F. Bonomo, M.C. Dourado, G. Durán, L. Faria, L.N. Grippo and M.D. Safe, Forbidden subgraphs and the König-Egerváry property, Discrete Appl. Math. 161 (2013) 2380–2388. https://doi.org/10.1016/J.DAM.2013.04.020
[2] E. Boros, M.C. Golumbic and V.E. Levit, On the number of vertices belonging to all maximum stable sets of a graph, Discrete Appl. Math. 124 (2002) 17–25. https://doi.org/10.1016/S0166-218X(01)00327-4
[3] B. Bollobás, Random Graphs (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9780511814068
[4] J.M. Bourjolly and W.R. Pulleyblank, König-Egerváry graphs, 2 -bicritical graphs, and fractional matchings, Discrete Appl. Math. 24 (1989) 63–82. https://doi.org/10.1016/0166-218X(92)90273-D
[5] A. Coja-Oghlan and C. Efthymiou, On independent sets in random graphs, Random Structures Algorithms 47 (2015) 436–486. https://doi.org/10.1002/rsa.20550
[6] R. Davila, TxGraffiti . https://github.com/RandyRDavila/TNP-That-New-Program
[7] E. DeLaVina, Graffiti.pc cms.uhd.edu/faculty/delavinae/research/Graffitipc.PDF
[8] Z. Deniz, V.E. Levit and E. Mandrescu, On graphs admitting two disjoint maximum independent sets (2019). arXiv preprint arXiv:1807.06914v2
[9] S. Fajtlowicz, Toward fully automated fragments of graph theory, preprint.
[10] A. Finbow, B. Hartnell and R.J. Nowakowski, A characterization of well covered graphs of girth 5 or greater, J. Combin. Theory Ser. B 57 (1993) 44–68. https://doi.org/10.1006/jctb.1993.1005
[11] J.C. Fournier, Coloration des aretes dun graphe, Cahiers du CERO (Bruxelles) 15 (1973) 311–314.
[12] A. Frieze and B. Pittel, Perfect matchings in random graphs with prescribed minimal degree, Math. Comput. Sci. III (2004) 95–132. https://doi.org/10.1007/978-3-0348-7915-6_11
[13] W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results, Discrete Math. 313 (2013) 839–854. https://doi.org/10.1016/j.disc.2012.11.031
[14] P. Hall, On representation of subsets, J. Lond. Math. Soc. 10 (1935) 26–30. https://doi.org/10.1112/jlms/s1-10.37.26
[15] C.E. Larson and R. Pepper, Graphs with equal independence and annihilation numbers, Electron. J. Combin. 18 (2011) #P180. https://doi.org/10.37236/667
[16] C.E. Larson, The critical independence number and an independence decomposition, European J. Combin. 32 (2011) 294–300. https://doi.org/10.1016/j.ejc.2010.10.004
[17] V.E. Levit and E. Mandrescu, On α+-stable König-Egerváry graphs, Discrete Math. 263 (2003) 179–190. https://doi.org/10.1016/S0012-365X(02)00528-9
[18] V.E. Levit and E. Mandrescu, On maximum matchings in König-Egerváry graphs, Discrete Appl. Math. 161 (2013) 1635–1638. https://doi.org/10.1016/j.dam.2013.01.005
[19] V.E. Levit and E. Mandrescu, On the critical difference of almost bipartite graphs (2019). ArXiv preprint arXiv:1905.09462v1
[20] G.L. Nemhauser and L.E. Trotter Jr., Vertex packings: Structural properties and algorithms, Math. Program. 8 (1975) 232–248. https://doi.org/10.1007/BF01580444
[21] R. Pepper, Binding Independence, Ph.D. Thesis (University of Houston, Houston, TX, 2004).
[22] M.D. Plummer, Well-covered graphs: A survey, Quaest. Math. 16 (1993) 253–287. https://doi.org/10.1080/16073606.1993.9631737
[23] J.C. Picard and M. Queyranne, On the integer-valued variables in the lonear vertex packing problem, Math. Program. 12 (1977) 97–101. https://doi.org/10.1007/BF01593772
[24] W.R. Pulleyblank, Minimum node covers and 2 -bicritical graphs, Math. Program. 17 (1979) 91–103. https://doi.org/10.1007/BF01588228
[25] B. Xu, On edge domination numbers of graphs, Discrete Math. 294 (2005) 311–316. https://doi.org/10.1016/j.disc.2004.11.008
[26] D.B. West, Introduction to Graph Theory, 2nd Edition (Prentice-Hall, 2000).