Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a13, author = {Erker, Tja\v{s}a Paj and \v{S}pacapan, Simon}, title = {Separation of {Cartesian} {Products} of {Graphs} {Into} {Several} {Connected} {Components} by the {Removal} of {Vertices}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {905--920}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a13/} }
TY - JOUR AU - Erker, Tjaša Paj AU - Špacapan, Simon TI - Separation of Cartesian Products of Graphs Into Several Connected Components by the Removal of Vertices JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 905 EP - 920 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a13/ LA - en ID - DMGT_2022_42_3_a13 ER -
%0 Journal Article %A Erker, Tjaša Paj %A Špacapan, Simon %T Separation of Cartesian Products of Graphs Into Several Connected Components by the Removal of Vertices %J Discussiones Mathematicae. Graph Theory %D 2022 %P 905-920 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a13/ %G en %F DMGT_2022_42_3_a13
Erker, Tjaša Paj; Špacapan, Simon. Separation of Cartesian Products of Graphs Into Several Connected Components by the Removal of Vertices. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 905-920. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a13/
[1] D. Bauer, H. Broersma and E. Schmeichel, Toughness in graphs—A survey, Graphs Combin. 22 (2006) 1–35. https://doi.org/10.1007/s00373-006-0649-0
[2] G. Chartrand, S.F. Kapoor, L. Lesniak and D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984) 1–6.
[3] V. Chvátal, Tough graphs and Hamiltonian circuits, Discrete Math. 5 (1973) 215–228. https://doi.org/10.1016/0012-365X(73)90138-6
[4] D.P. Day, O.R. Oellermann and H.C. Swart, The ℓ-connectivity function of trees and complete multipartite graphs, J. Combin. Math. Combin. Comput. 10 (1991) 183–192.
[5] J. Govorčin, and R. Škrekovski, On the connectivity of Cartesian product of graphs, Ars Math. Contemp. 7 (2014) 293–297. https://doi.org/10.26493/1855-3974.313.e10
[6] O.R. Oellermann, On the ℓ-connectivity of a graph, Graphs Combin. 3 (1987) 285–291. https://doi.org/10.1007/BF01788551
[7] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515–525. https://doi.org/10.4153/CJM-1957-060-7
[8] Y. Sun and X. Li, On the difference of two generalized connectivities of a graph, J. Comb. Optim. 33 (2017) 283–291. https://doi.org/10.1007/s10878-015-9956-9
[9] Y. Sun, F. Li and Z. Jin, On two generalized connectivities of graphs, Discuss. Math. Graph Theory 38 (2018) 245–261. https://doi.org/10.7151/dmgt.1987
[10] Y. Sun, On the maximum and minimum sizes of a graph with given k-connectivity, Discuss. Math. Graph Theory 37 (2017) 623–632. https://doi.org/10.7151/dmgt.1941
[11] S. Špacapan, Connectivity of Cartesian products of graphs, Appl. Math. Lett. 21 (2008) 682–685. https://doi.org/10.1016/j.aml.2007.06.010
[12] J.M. Xu and C. Yang, Connectivity and super-connectivity of Cartesian product graphs, Ars Combin. 95 (2010) 235–245.
[13] C. Yang and J.M. Xu, Reliability of interconnection networks modeled by Cartesian product digraphs, Networks 52 (2008) 202–205. https://doi.org/10.1002/net.20231