Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a11, author = {Chellali, Mustapha and Rad, Nader Jafari and Sheikholeslami, Seyed Mahmoud and Volkmann, Lutz}, title = {The {Roman} {Domatic} {Problem} in {Graphs} and {Digraphs:} {A} {Survey}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {861--891}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/} }
TY - JOUR AU - Chellali, Mustapha AU - Rad, Nader Jafari AU - Sheikholeslami, Seyed Mahmoud AU - Volkmann, Lutz TI - The Roman Domatic Problem in Graphs and Digraphs: A Survey JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 861 EP - 891 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/ LA - en ID - DMGT_2022_42_3_a11 ER -
%0 Journal Article %A Chellali, Mustapha %A Rad, Nader Jafari %A Sheikholeslami, Seyed Mahmoud %A Volkmann, Lutz %T The Roman Domatic Problem in Graphs and Digraphs: A Survey %J Discussiones Mathematicae. Graph Theory %D 2022 %P 861-891 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/ %G en %F DMGT_2022_42_3_a11
Chellali, Mustapha; Rad, Nader Jafari; Sheikholeslami, Seyed Mahmoud; Volkmann, Lutz. The Roman Domatic Problem in Graphs and Digraphs: A Survey. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 861-891. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/
[1] H.A. Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241–255. https://doi.org/10.1007/s10878-012-9500-0
[2] H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517. https://doi.org/10.2298/AADM160802017A
[3] J. Amjadi, The signed total Roman domatic number of a digraph, Discrete Math. Algorithms Appl. 10 (2018) Article ID: 1850020. https://doi.org/10.1142/S1793830918500209
[4] J. Amjadi, Twin signed total Roman domatic numbers in digraphs, Commun. Comb. Optim., in press. https://doi.org/10.22049/CCO.2020.26791.1142
[5] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Total Roman domatic number of a graph, Asian-Eur. J. Math. 13 (2020) Article ID: 2050110. https://doi.org/10.1142/S1793557120501107
[6] J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in di-graphs, Asian-Eur. J. Math. 11 (2018) Article ID: 1850034. https://doi.org/10.1142/S1793557118500341
[7] H. Aram, S. Norouzian, S.M. Sheikholeslami and L. Volkmann, The distance Roman domination numbers of graphs, Discuss. Math. Graph Theory 33 (2013) 717–730. https://doi.org/10.7151/dmgt.1703
[8] H. Aram, S.M. Sheikholeslami and L. Volkmann, The distance Roman domatic number of a graph, AKCE Int. J. Graphs Comb. 9 (2012) 205–212.
[9] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. https://doi.org/10.1016/j.dam.2016.03.017
[10] A. Bodaghli, S.M. Sheikholeslami and L. Volkmann, Twin signed Roman domination numbers in directed graphs, Tamkang J. Math. 47 (2016) 357–371. https://doi.org/10.5556/j.tkjm.47.2016.2035
[11] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[12] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
[13] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer, 2020) 365–409. https://doi.org/10.1007/978-3-030-51117-3_11
[14] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, (Eds), T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer, 2021).
[15] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020) 966–984. https://doi.org/10.1016/j.akcej.2019.12.001
[16] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141–171.
[17] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.
[18] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261. https://doi.org/10.1002/net.3230070305
[19] G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. 42 (2019) 1907–1920. https://doi.org/10.1007/s40840-017-0582-9
[20] G. Hao, Z. Xie and X. Chen, A note on Roman domination of digraphs, Discuss. Math. Graph Theory 39 (2019) 13–21. https://doi.org/10.7151/dmgt.2067
[21] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[22] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
[23] M.A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016) 175–190. https://doi.org/10.1007/s00373-015-1536-3
[24] K. Kämmerling and L. Volkmann, The Roman k-domination in graphs, J. Korean Math. Soc. 46 (2009) 1309–1318. https://doi.org/10.4134/JKMS.2009.46.6.1309
[25] M. Kamaraj and P. Jakkamal, Directed Roman domination in digraphs, Int. J. Comb. Graph Theory Appl. 4 (2011) 103–116.
[26] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608–619. https://doi.org/10.1007/s10878-012-9482-y
[27] A.P. Kazemi, S.M. Sheikholeslami and L. Volkmann, The Roman ( k, k ) -domatic number of a graph, Ann. Math. Inform. 38 (2011) 45–57.
[28] C.S. ReVelle and K.E. Rosing, Defendens Iperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. https://doi.org/10.1080/00029890.2000.12005243
[29] S.M. Sheikholeslami and L. Volkmann, The Roman domatic number of a graph, Appl. Math. Lett. 23 (2010) 1295–1300. https://doi.org/10.1016/j.aml.2010.06.016
[30] S.M. Sheikholeslami and L. Volkmann, The Roman k-domatic number of a graph, Acta Math. Sin. (Engl. Ser.) 27 (2011) 1899–1906. https://doi.org/10.1007/s10114-011-0385-0
[31] S.M. Sheikholeslami and L. Volkmann, The Roman domination number of a digraph, Acta Univ. Apulensis Math. Inform. 27 (2011) 77–86.
[32] S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a graph, Ann. Math. Inform. 40 (2012) 105–112.
[33] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015) 456–467. https://doi.org/10.1007/s10878-013-9648-2
[34] S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electron. J. Graph Theory Appl. 3 (2015) 85–93. https://doi.org/10.5614/ejgta.2015.3.1.9
[35] S.M. Sheikholeslami and L. Volkmann, Twin signed Roman domatic numbers in digraphs, Tamkang J. Math. 48 (2017) 265–272. https://doi.org/10.5556/j.tkjm.48.2017.2306
[36] P.J. Slater and E.L. Trees, Multi-fractional domination, J. Combin. Math. Combin. Comput. 40 (2002) 171–181.
[37] I. Stewart, Defend the Roman Empire !, Sci. Amer. 281 (1999) 136–139. https://doi.org/10.1038/scientificamerican1299-136
[38] H. Tan, H. Liang, R. Wang and J. Zhou, Computing Roman domatic number of graphs, Inform. Process. Lett. 116 (2016) 554–559. https://doi.org/10.1016/j.ipl.2016.04.010
[39] L. Volkmann, The signed Roman k-domatic number of a graph, Discrete Appl. Math. 180 (2015) 150–157. https://doi.org/10.1016/j.dam.2014.07.030
[40] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855–871. https://doi.org/10.1007/s10878-015-9906-6
[41] L. Volkmann, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016) 179–186. https://doi.org/10.1016/j.dam.2016.06.006
[42] L. Volkmann, Signed Roman k-domination in digraphs, Graphs Combin. 32 (2016) 1217–1227. https://doi.org/10.1007/s00373-015-1641-3
[43] L. Volkmann, The signed Roman k-domatic number of digraphs, Australas. J. Combin. 64 (2016) 444–457.
[44] L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017) 261–272. https://doi.org/10.7151/dmgt.1929
[45] L. Volkmann, The signed total Roman k-domatic number of a graph, Discuss. Math. Graph Theory 37 (2017) 1027–1038. https://doi.org/10.7151/dmgt.1970
[46] L. Volkmann, Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018) 105–116.
[47] L. Volkmann, The double Roman domatic number of a graph, J. Combin. Math. Combin. Comput. 104 (2018) 205–215.
[48] L. Volkmann, Double Roman domination and domatic numbers of graphs, Commun. Comb. Optim. 3 (2018) 71–77. https://doi.org/10.22049/CCO.2018.26125.1078
[49] L. Volkmann, The Italian domatic number of a digraph, Commun. Comb. Optim. 4 (2019) 61–70. https://doi.org/10.22049/CCO.2019.26360.1102
[50] L. Volkmann, The Roman {2} -domatic number of graphs, Discrete Appl. Math. 258 (2019) 235–241. https://doi.org/10.1016/j.dam.2018.11.027
[51] L. Volkmann, Italian domination in digraphs, (J. Combin. Math. Combin. Comput.),. to appear
[52] L. Volkmann, The double Roman domatic number of a digraph, Discuss. Math. Graph Theory 40 (2020) 995–1004.
[53] L. Volkmann and D. Meierling, A note on the Roman domatic number of a digraph, Commun. Comb. Optim. 5 (2020) 19–26. https://doi.org/10.22049/CCO.2019.26419.1107
[54] Z. Xie, G. Hao and S. Wei, The Roman domination and domatic numbers of a digraph, Commun. Comb. Optim. 4 (2019) 47–59. https://doi.org/10.22049/CCO.2019.26356.1101
[55] B. Zelinka, k-domatic number of graphs, Czechoslovak Math. J. 33 (1983) 309–313.
[56] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147.
[57] B. Zelinka, Domatic numbers of graphs and their variants: A survey, in: Domination in Graphs: Advanced Topics, T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Ed(s)), (Marcel Dekker, Inc., New York, 1998) 351–374.