The Roman Domatic Problem in Graphs and Digraphs: A Survey
Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 861-891.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we survey results on the Roman domatic number and its variants in both graphs and digraphs. This fifth survey completes our works on Roman domination and its variations published in two book chapters and two other surveys.
Keywords: Roman domination, domatic
@article{DMGT_2022_42_3_a11,
     author = {Chellali, Mustapha and Rad, Nader Jafari and Sheikholeslami, Seyed Mahmoud and Volkmann, Lutz},
     title = {The {Roman} {Domatic} {Problem} in {Graphs} and {Digraphs:} {A} {Survey}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {861--891},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/}
}
TY  - JOUR
AU  - Chellali, Mustapha
AU  - Rad, Nader Jafari
AU  - Sheikholeslami, Seyed Mahmoud
AU  - Volkmann, Lutz
TI  - The Roman Domatic Problem in Graphs and Digraphs: A Survey
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2022
SP  - 861
EP  - 891
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/
LA  - en
ID  - DMGT_2022_42_3_a11
ER  - 
%0 Journal Article
%A Chellali, Mustapha
%A Rad, Nader Jafari
%A Sheikholeslami, Seyed Mahmoud
%A Volkmann, Lutz
%T The Roman Domatic Problem in Graphs and Digraphs: A Survey
%J Discussiones Mathematicae. Graph Theory
%D 2022
%P 861-891
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/
%G en
%F DMGT_2022_42_3_a11
Chellali, Mustapha; Rad, Nader Jafari; Sheikholeslami, Seyed Mahmoud; Volkmann, Lutz. The Roman Domatic Problem in Graphs and Digraphs: A Survey. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 861-891. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a11/

[1] H.A. Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014) 241–255. https://doi.org/10.1007/s10878-012-9500-0

[2] H.A. Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016) 501–517. https://doi.org/10.2298/AADM160802017A

[3] J. Amjadi, The signed total Roman domatic number of a digraph, Discrete Math. Algorithms Appl. 10 (2018) Article ID: 1850020. https://doi.org/10.1142/S1793830918500209

[4] J. Amjadi, Twin signed total Roman domatic numbers in digraphs, Commun. Comb. Optim., in press. https://doi.org/10.22049/CCO.2020.26791.1142

[5] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Total Roman domatic number of a graph, Asian-Eur. J. Math. 13 (2020) Article ID: 2050110. https://doi.org/10.1142/S1793557120501107

[6] J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in di-graphs, Asian-Eur. J. Math. 11 (2018) Article ID: 1850034. https://doi.org/10.1142/S1793557118500341

[7] H. Aram, S. Norouzian, S.M. Sheikholeslami and L. Volkmann, The distance Roman domination numbers of graphs, Discuss. Math. Graph Theory 33 (2013) 717–730. https://doi.org/10.7151/dmgt.1703

[8] H. Aram, S.M. Sheikholeslami and L. Volkmann, The distance Roman domatic number of a graph, AKCE Int. J. Graphs Comb. 9 (2012) 205–212.

[9] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29. https://doi.org/10.1016/j.dam.2016.03.017

[10] A. Bodaghli, S.M. Sheikholeslami and L. Volkmann, Twin signed Roman domination numbers in directed graphs, Tamkang J. Math. 47 (2016) 357–371. https://doi.org/10.5556/j.tkjm.47.2016.2035

[11] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004

[12] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013

[13] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Roman domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer, 2020) 365–409. https://doi.org/10.1007/978-3-030-51117-3_11

[14] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination, in: Structures of Domination in Graphs, (Eds), T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer, 2021).

[15] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II, AKCE Int. J. Graphs Comb. 17 (2020) 966–984. https://doi.org/10.1016/j.akcej.2019.12.001

[16] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami and L. Volkmann, A survey on Roman domination parameters in directed graphs, J. Combin. Math. Combin. Comput. 115 (2020) 141–171.

[17] E.J. Cockayne, P.J.P. Grobler, W.R. Gründlingh, J. Munganga and J.H. van Vuuren, Protection of a graph, Util. Math. 67 (2005) 19–32.

[18] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977) 247–261. https://doi.org/10.1002/net.3230070305

[19] G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. 42 (2019) 1907–1920. https://doi.org/10.1007/s40840-017-0582-9

[20] G. Hao, Z. Xie and X. Chen, A note on Roman domination of digraphs, Discuss. Math. Graph Theory 39 (2019) 13–21. https://doi.org/10.7151/dmgt.2067

[21] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[22] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).

[23] M.A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs Combin. 32 (2016) 175–190. https://doi.org/10.1007/s00373-015-1536-3

[24] K. Kämmerling and L. Volkmann, The Roman k-domination in graphs, J. Korean Math. Soc. 46 (2009) 1309–1318. https://doi.org/10.4134/JKMS.2009.46.6.1309

[25] M. Kamaraj and P. Jakkamal, Directed Roman domination in digraphs, Int. J. Comb. Graph Theory Appl. 4 (2011) 103–116.

[26] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013) 608–619. https://doi.org/10.1007/s10878-012-9482-y

[27] A.P. Kazemi, S.M. Sheikholeslami and L. Volkmann, The Roman ( k, k ) -domatic number of a graph, Ann. Math. Inform. 38 (2011) 45–57.

[28] C.S. ReVelle and K.E. Rosing, Defendens Iperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. https://doi.org/10.1080/00029890.2000.12005243

[29] S.M. Sheikholeslami and L. Volkmann, The Roman domatic number of a graph, Appl. Math. Lett. 23 (2010) 1295–1300. https://doi.org/10.1016/j.aml.2010.06.016

[30] S.M. Sheikholeslami and L. Volkmann, The Roman k-domatic number of a graph, Acta Math. Sin. (Engl. Ser.) 27 (2011) 1899–1906. https://doi.org/10.1007/s10114-011-0385-0

[31] S.M. Sheikholeslami and L. Volkmann, The Roman domination number of a digraph, Acta Univ. Apulensis Math. Inform. 27 (2011) 77–86.

[32] S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a graph, Ann. Math. Inform. 40 (2012) 105–112.

[33] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015) 456–467. https://doi.org/10.1007/s10878-013-9648-2

[34] S.M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electron. J. Graph Theory Appl. 3 (2015) 85–93. https://doi.org/10.5614/ejgta.2015.3.1.9

[35] S.M. Sheikholeslami and L. Volkmann, Twin signed Roman domatic numbers in digraphs, Tamkang J. Math. 48 (2017) 265–272. https://doi.org/10.5556/j.tkjm.48.2017.2306

[36] P.J. Slater and E.L. Trees, Multi-fractional domination, J. Combin. Math. Combin. Comput. 40 (2002) 171–181.

[37] I. Stewart, Defend the Roman Empire !, Sci. Amer. 281 (1999) 136–139. https://doi.org/10.1038/scientificamerican1299-136

[38] H. Tan, H. Liang, R. Wang and J. Zhou, Computing Roman domatic number of graphs, Inform. Process. Lett. 116 (2016) 554–559. https://doi.org/10.1016/j.ipl.2016.04.010

[39] L. Volkmann, The signed Roman k-domatic number of a graph, Discrete Appl. Math. 180 (2015) 150–157. https://doi.org/10.1016/j.dam.2014.07.030

[40] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016) 855–871. https://doi.org/10.1007/s10878-015-9906-6

[41] L. Volkmann, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016) 179–186. https://doi.org/10.1016/j.dam.2016.06.006

[42] L. Volkmann, Signed Roman k-domination in digraphs, Graphs Combin. 32 (2016) 1217–1227. https://doi.org/10.1007/s00373-015-1641-3

[43] L. Volkmann, The signed Roman k-domatic number of digraphs, Australas. J. Combin. 64 (2016) 444–457.

[44] L. Volkmann, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017) 261–272. https://doi.org/10.7151/dmgt.1929

[45] L. Volkmann, The signed total Roman k-domatic number of a graph, Discuss. Math. Graph Theory 37 (2017) 1027–1038. https://doi.org/10.7151/dmgt.1970

[46] L. Volkmann, Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018) 105–116.

[47] L. Volkmann, The double Roman domatic number of a graph, J. Combin. Math. Combin. Comput. 104 (2018) 205–215.

[48] L. Volkmann, Double Roman domination and domatic numbers of graphs, Commun. Comb. Optim. 3 (2018) 71–77. https://doi.org/10.22049/CCO.2018.26125.1078

[49] L. Volkmann, The Italian domatic number of a digraph, Commun. Comb. Optim. 4 (2019) 61–70. https://doi.org/10.22049/CCO.2019.26360.1102

[50] L. Volkmann, The Roman {2} -domatic number of graphs, Discrete Appl. Math. 258 (2019) 235–241. https://doi.org/10.1016/j.dam.2018.11.027

[51] L. Volkmann, Italian domination in digraphs, (J. Combin. Math. Combin. Comput.),. to appear

[52] L. Volkmann, The double Roman domatic number of a digraph, Discuss. Math. Graph Theory 40 (2020) 995–1004.

[53] L. Volkmann and D. Meierling, A note on the Roman domatic number of a digraph, Commun. Comb. Optim. 5 (2020) 19–26. https://doi.org/10.22049/CCO.2019.26419.1107

[54] Z. Xie, G. Hao and S. Wei, The Roman domination and domatic numbers of a digraph, Commun. Comb. Optim. 4 (2019) 47–59. https://doi.org/10.22049/CCO.2019.26356.1101

[55] B. Zelinka, k-domatic number of graphs, Czechoslovak Math. J. 33 (1983) 309–313.

[56] B. Zelinka, Domatic number and degrees of vertices of a graph, Math. Slovaca 33 (1983) 145–147.

[57] B. Zelinka, Domatic numbers of graphs and their variants: A survey, in: Domination in Graphs: Advanced Topics, T.W. Haynes, S.T. Hedetniemi and P.J. Slater, (Ed(s)), (Marcel Dekker, Inc., New York, 1998) 351–374.