Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_3_a1, author = {Poureidi, Abolfazl and Rad, Nader Jafari}, title = {Algorithmic {Aspects} of the {Independent} {2-Rainbow} {Domination} {Number} and {Independent} {Roman} {{2}-Domination} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {709--726}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a1/} }
TY - JOUR AU - Poureidi, Abolfazl AU - Rad, Nader Jafari TI - Algorithmic Aspects of the Independent 2-Rainbow Domination Number and Independent Roman {2}-Domination Number JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 709 EP - 726 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a1/ LA - en ID - DMGT_2022_42_3_a1 ER -
%0 Journal Article %A Poureidi, Abolfazl %A Rad, Nader Jafari %T Algorithmic Aspects of the Independent 2-Rainbow Domination Number and Independent Roman {2}-Domination Number %J Discussiones Mathematicae. Graph Theory %D 2022 %P 709-726 %V 42 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a1/ %G en %F DMGT_2022_42_3_a1
Poureidi, Abolfazl; Rad, Nader Jafari. Algorithmic Aspects of the Independent 2-Rainbow Domination Number and Independent Roman {2}-Domination Number. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 3, pp. 709-726. http://geodesic.mathdoc.fr/item/DMGT_2022_42_3_a1/
[1] J. Amjadi, M. Falahat, N. Jafari Rad and S.M. Sheikholeslami, Strong equality between the 2 -rainbow domination and independent 2 -rainbow domination numbers in trees, Bull. Malays. Math. Sci. Soc. 39 (2016) 205–218. https://doi.org/10.1007/s40840-015-0284-0
[2] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213–225. https://doi.org/10.11650/twjm/1500602498
[3] B. Brešar and T.K.Šumenjak, On the 2 -rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394–2400. https://doi.org/10.1016/j.dam.2007.07.018
[4] M. Chellali and N. Jafari Rad, Independent 2 -rainbow domination in graphs, J. Combin. Math. Combin. Comput. 94 (2015) 133–148
[5] M. Chellali and N. Jafari Rad, On 2 -rainbow domination and Roman domination in graphs, Australas. J. Combin. 56 (2013) 85–93.
[6] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. MacRae, Roman {2} -domination, Discrete Appl. Math. 204 (2016) 22–28. https://doi.org/10.1016/j.dam.2015.11.013
[7] H. Chen and Ch. Lu, A note on Roman {2}-domination problem in graphs . arXiv:1804.09338.pdf
[8] E.J. Cockayane, P.M. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11–22. https://doi.org/10.1016/j.disc.2003.06.004
[9] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, New York, 1979).
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
[11] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329–343. https://doi.org/10.1137/0211025
[12] A. Rahmouni and M. Chellali, Independent Roman {2} -domination in graphs, Discrete Appl. Math. 236 (2018) 408–414. https://doi.org/10.1016/j.dam.2017.10.028
[13] C.S. ReVelle and K.E. Rosing, Defendens imperium Romanum: A classical problem in military strategy, Amer. Math. Monthly 107 (2000) 585–594. https://doi.org/10.1080/00029890.2000.12005243
[14] Z. Shao, Z. Li, A. Peperko, J. Wan and J.Žerovnik, Independent rainbow domination of graphs, Bull. Malays. Math. Sci. Soc. 42 (2019) 417–435. https://doi.org/10.1007/s40840-017-0488-6
[15] Z. Shao, M. Liang, C. Yin, X. Xu, P. Pavlič and J.Žerovnik, On rainbow domination numbers of graphs, Inform. Sci. 254 (2014) 225–234. https://doi.org/10.1016/j.ins.2013.07.020
[16] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999) 136–139. https://doi.org/10.1038/scientificamerican1299-136
[17] Y. Wu and N. Jafari Rad, Bounds on the 2 -rainbow domination number of graphs, Graphs Combin. 29 (2013) 1125–1133. https://doi.org/10.1007/s00373-012-1158-y