Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a9, author = {Liu, Fengxia and Wu, Baoyindureng and Meng, Jixiang}, title = {Arbitrarily {Partitionable} {{2K\protect\textsubscript{2},} {C\protect\textsubscript{4}}-Free} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {485--500}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a9/} }
TY - JOUR AU - Liu, Fengxia AU - Wu, Baoyindureng AU - Meng, Jixiang TI - Arbitrarily Partitionable {2K2, C4}-Free Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 485 EP - 500 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a9/ LA - en ID - DMGT_2022_42_2_a9 ER -
Liu, Fengxia; Wu, Baoyindureng; Meng, Jixiang. Arbitrarily Partitionable {2K2, C4}-Free Graphs. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 485-500. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a9/
[1] D. Barth, O. Baudon and J. Puech, Decomposable trees: a polynomial algorithm for tripodes, Discrete Math. 119 (2002) 205-216. https://doi.org/10.1016/S0166-218X(00)00322-X
[2] D. Barth and H. Fournier, A degree bound on decomposable trees, Discrete Math. 306 (2006) 469–477. https://doi.org/10.1016/j.disc.2006.01.006
[3] D. Barth, H. Fournier and R. Ravaux, On the shape of decomposable trees, Discrete Math. 309 (2009) 3882–3887. https://doi.org/10.1016/j.disc.2008.11.012
[4] O. Baudon, J. Bensmail, F. Foucaud and M. Pilśniak, Structural properties of recursively partitionable graphs with connectivity 2, Discus. Math. Graph Theory 37 (2017) 89–115. https://doi.org/10.7151/dmgt.1925
[5] O. Baudon, J. Bensmail, R. Kalinowski, A. Marczyk, J. Przybyło and M. Woźniak, On the Cartesian product of an arbitrarily partitionable graph and a traceable graph, Discrete Math. Theor. Comput. Sci. 16 (2014) 225–232.
[6] O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak, Partitioning powers of traceable of Hamiltonian graphs, Theoret. Comput. Sci. 520 (2014) 133–137. https://doi.org/10.1016/j.tcs.2013.10.016
[7] O. Baudon, F. Foucaud, J. Przybyło and M. Woźniak, On the structure of arbitrarily partitionable graphs with given connectivity, Discrete Appl. Math. 162 (2014) 381–385. https://doi.org/10.1016/j.dam.2013.09.007
[8] O. Baudon, F. Gilbert and M. Woźniak, Recursively arbitrarily vertex-decomposable graphs, Opuscula Math. 32 (2012) 689–706. https://doi.org/10.7494/OpMath.2012.32.4.689
[9] O. Baudon, J. Przybyło and M. Woźniak, On minimal arbitrarily partitionable graphs, Inform. Process. Lett. 112 (2012) 697–700. https://doi.org/10.1016/j.ipl.2012.06.010
[10] J. Bensmail, On the complexity of partitioning a graph into a few connected subgraphs, J. Comb. Optim. 30 (2015) 174–187. https://doi.org/10.1007/s10878-013-9642-8
[11] Z. Blázsik, M. Hujter, A. Pluhár and Zs. Tuza, Graphs with no induced C4 and 2K2, Discrete Math. 115 (1993) 51–55. https://doi.org/10.1016/0012-365X(93)90477-B
[12] H. Broersma, D. Kratsch and G.J. Woeginger, Fully decomposable split graphs, European J. Combin. 34 (2013) 567–575. https://doi.org/10.1016/j.ejc.2011.09.044
[13] F.R.K. Chung, A. Gyárfás, Zs. Tuza and W.T. Trotter, The maximum number of edges in 2K2-free graphs of bounded degree, Discrete Math. 81 (1990) 129–135. https://doi.org/10.1016/0012-365X(90)90144-7
[14] V. Chvátal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977) 145–162. https://doi.org/10.1016/S0167-5060(08)70731-3
[15] S. Cichacz, A. Görlich, A. Marczyk and J. Przybyło, Arbitrarily vertex decomposable caterpillars with four or five leaves, Discuss. Math. Graph Theory 26 (2006) 291–305. https://doi.org/10.7151/dmgt.1321
[16] S. Földes, P.L. Hammer, Split graphs, Congr. Numer. XIX (1977) 311–315.
[17] E. Győri, On division of graphs to connected subgraphs, in: Combinatorics, Proc. Fifth Hungarian Colloq., (Keszthely, 1976, Colloq. Math. Soc. János Bolyai 18, 1976) 485–494.
[18] M. Horňák, A. Marczyk, I. Schiermeyer and M. Woźniak, Dense arbitrarily vertex decomposable graphs, Graphs Combin. 28 (2012) 807–821. https://doi.org/10.1007/s00373-011-1077-3
[19] M. Horňák, Zs. Tuza and M. Woźniak, On-line arbitrarily vertex decomposable trees, Discrete Appl. Math. 155 (2007) 1420–1429. https://doi.org/10.1016/j.dam.2007.02.011
[20] M. Horňák and M. Woźniak, Arbitrarily vertex decomposable trees are of maximum degree at most six, Opuscula Math. 23 (2003) 49–62.
[21] M. Horňák and M. Woźniak, On arbitrarily vertex decomposable trees, Discrete Math. 308 (2008) 1268–1281. https://doi.org/10.1016/j.disc.2007.04.008
[22] R. Kalinowski, Dense on-line arbitrarily partitionable graphs, Discrete Appl. Math. 226 (2017) 71–77. https://doi.org/10.1016/j.dam.2017.04.006
[23] R. Kalinowski, M. Pilśniak, I. Schiermeyer and M. Woźniak, Dense arbitrarily partitionable graphs, Discuss. Math. Graph Theory 36 (2016) 5–22. https://doi.org/10.7151/dmgt.1833
[24] R. Kalinowski, M. Pilśniak, M. Woźniak and O. Zioło, Arbitrarily vertex decomposable suns with few rays, Discrete Math. 309 (2009) 3726–3732. https://doi.org/10.1016/j.disc.2008.02.019
[25] R. Kalinowski, M. Pilśniak, M. Woźniak and O. Zioło, On-line arbitrarily vertex decomposable suns, Discrete Math. 309 (2009) 6328–6336. https://doi.org/10.1016/j.disc.2008.11.025
[26] L. Lovász, A homology theory for spanning trees of a graph, Acta Math. Acad. Sci. Hungar. 30(3-4) (1977) 241–251. https://doi.org/10.1007/BF01896190
[27] A. Marczyk, A note on arbitrarily vertex decomposable graphs, Opuscula Math. 26 (2006) 109–118.
[28] A. Marczyk, An Ore-type condition for arbitrarily vertex decomposable graphs, Discrete Math. 309 (2009) 3588–3594. https://doi.org/10.1016/j.disc.2007.12.066
[29] R. Ravaux, Decomposing trees with large diameter, Theoret. Comput. Sci. 411 (2010) 3068–3072. https://doi.org/10.1016/j.tcs.2010.04.032