Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a8, author = {Axenovich, Maria and Karrer, Annette}, title = {High {Girth} {Hypergraphs} with {Unavoidable} {Monochromatic} or {Rainbow} {Edges}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {471--484}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a8/} }
TY - JOUR AU - Axenovich, Maria AU - Karrer, Annette TI - High Girth Hypergraphs with Unavoidable Monochromatic or Rainbow Edges JO - Discussiones Mathematicae. Graph Theory PY - 2022 SP - 471 EP - 484 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a8/ LA - en ID - DMGT_2022_42_2_a8 ER -
Axenovich, Maria; Karrer, Annette. High Girth Hypergraphs with Unavoidable Monochromatic or Rainbow Edges. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 471-484. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a8/
[1] N. Alon, A. Kostochka, B. Reiniger, D. West and X. Zhu, Coloring, sparseness and girth, Israel J. Math. 214 (2016) 315–331. https://doi.org/10.1007/s11856-016-1361-2
[2] Y. Caro, J. Lauri and C. Zarb, Selective hypergraph colourings, Discrete Math. 339 (2016) 1232–1241. https://doi.org/10.1016/j.disc.2015.11.006
[3] D. Duffus, V. Rödl, B. Sands and N. Sauer, Chromatic numbers and homomorphisms of large girth hypergraphs, in: Topics in Discrete Mathematics, (Springer, 2006) 455–471.
[4] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34–38. https://doi.org/10.4153/CJM-1959-003-9
[5] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Hungar. 17 (1966) 61–99. https://doi.org/10.1007/BF02020444
[6] P. Erdős and L. Lovász, Problems and results on 3 -chromatic hypergraphs and some related questions, in: Infinite and Finite Sets, (Keszthely, 1973), Colloq. Math. Soc. János Bolyai 10 (1975) 609–627.
[7] P. Erdős, J. Nešetřil and V. Rödl, Selectivity of hypergraphs, in: Finite and Infinite Sets, Vol. I (Eger, 1981), Colloq. Math. Soc. János Bolyai 37 (1984) 265–284. https://doi.org/10.1016/B978-0-444-86893-0.50020-6
[8] T. Feder and M.Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: A study through datalog and group theory, SIAM J. Comput. 28 (1998) 57–104. https://doi.org/10.1137/S0097539794266766
[9] A. Karrer, Colorability of Uniform Hypergraphs without Monochromatic and Rainbow Edges, Master Thesis (Moldova State University, 1997).
[10] A. Kostochka and J. Nešetřil, Properties of Descartes’ construction of triangle-free graphs with high chromatic number, Combin. Probab. Comput. 8 (1999) 467–472. https://doi.org/10.1017/S0963548399004022
[11] A. Kostochka and V. Rödl, Constructions of sparse uniform hypergraphs with high chromatic number, Random Structures Algorithms 36 (2010) 46–56. https://doi.org/10.1002/rsa.20293
[12] I. Kříž, A hypergraph-free construction of highly chromatic graphs without short cycles, Combinatorica 9 (1989) 227–229. https://doi.org/10.1007/BF02124683
[13] G. Kun, Constraints, MMSNP and expander relational structures, Combinatorica 33 (2013) 335–347. https://doi.org/10.1007/s00493-013-2405-4
[14] A. Kupavskii and D. Shabanov, Colourings of uniform hypergraphs with large girth and applications, Combin. Probab. Comput. 27 (2018) 245–273. https://doi.org/10.1017/S0963548317000475
[15] L. Lovász, On chromatic number of finite set-systems, Acta Math. Hungar. 19 (1968) 59–67. https://doi.org/10.1007/BF01894680
[16] V. Müller, On colorable critical and uniquely colorable critical graphs, in: Recent Advances in Graph Theory, M. Fiedler (Ed(s)), (Academia, Prague, 1975).
[17] V. Müller, On colorings of graphs without short cycles, Discrete Math. 26 (1979) 165–176. https://doi.org/10.1016/0012-365X(79)90121-3
[18] J. Nešetřil, A combinatorial classic—sparse graphs with high chromatic number, in: Erdős Centennial, (Springer, Berlin, Heidelberg, 2013) 383–407. https://doi.org/10.1007/978-3-642-39286-3_15
[19] J. Nešetřil and V. Rödl, Selective graphs and hypergraphs, Ann. Discrete Math. 3 (1978) 181–189. https://doi.org/10.1016/S0167-5060(08)70506-5
[20] J. Nešetřil and V. Rödl, On a probabilistic graph-theoretical method, Proc. Amer. Math. Soc. 72 (1978) 417–421. https://doi.org/10.1090/S0002-9939-1978-0507350-7
[21] A. Raigorodskii and D. Shabanov, The Erdős-Hajnal problem of hypergraph colouring, its generalizations, and related problems, Russian Math. Surveys 66 (2011) 933. https://doi.org/10.1070/RM2011v066n05ABEH004764
[22] N. Sauer, On the existence of regular n-graphs with given girth, J. Combin. Theory 9 (1970) 144–147. https://doi.org/10.1016/S0021-9800(70)80021-7
[23] V. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms, and Applications (AMS, Providence, 2002). https://doi.org/10.1090/fim/017