Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2022_42_2_a5, author = {Shang, Jen-Ling}, title = {Branch-Weight {Unique} {Trees}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {405--416}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a5/} }
Shang, Jen-Ling. Branch-Weight Unique Trees. Discussiones Mathematicae. Graph Theory, Tome 42 (2022) no. 2, pp. 405-416. http://geodesic.mathdoc.fr/item/DMGT_2022_42_2_a5/
[1] C.A. Barefoot, R.C. Entringer and L.A. Székely, Extremal values for ratios of distances in trees, Discrete Appl. Math. 80 (1997) 37–56. https://doi.org/10.1016/S0166-218X(97)00068-1
[2] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Pub. Co., Redwood City, 1990).
[3] C. Jordan, Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869) 185–190. https://doi.org/10.1515/crll.1869.70.185
[4] C. Lin and J.-L. Shang, Statuses and branch-weights of weighted trees, Czechoslovak Math. J. 59 (2009) 1019–1025. https://doi.org/10.1007/s10587-009-0071-x
[5] W. Piotrowski, A generalization of branch weight centroids, Appl. Math. (Warsaw) 19 (1987) 541–545. https://doi.org/10.4064/am-19-3-4-541-545
[6] W. Piotrowski and M.M. Sysło, Some properties of graph centroids, Ann. Oper. Res. 33 (1991) 227–236. https://doi.org/10.1007/BF02115757
[7] J.-L. Shang and C. Lin, An uniqueness result for the branch-weight sequences of spiders, The WHAMPOA—An Interdisciplinary Journal 54 (2008) 31–38.
[8] R. Skurnick, Integer Sequences Associated with Trees, Ph.D. Dissertation (City University of New York, 1994).
[9] R. Skurnick, Extending the concept of branch-weight centroid number to the vertices of all connected graphs via the Slater number, Graph Theory Notes N.Y. 33 (1997) 28–32.
[10] R. Skurnick, A characterization of the centroid sequence of a caterpillar, Graph Theory Notes N.Y. 41 (2001) 7–13.
[11] P.J. Slater, Accretion centers: A generalization of branch weight centroids, Discrete Appl. Math. 3 (1981) 187–192. https://doi.org/10.1016/0166-218X(81)90015-9